Original-URL des Artikels: https://www.golem.de/0812/63973.html    Veröffentlicht: 05.12.2008 16:13    Kurz-URL: https://glm.io/63973

Funkwellen zähmen Wasserstoffplasma

MIT-Forscher machen wichtige Entdeckung für die Kernfusion

Forscher in den USA haben eine Entdeckung gemacht, die wichtig ist für die Weiterentwicklung bei der Nutzung der Kernfusion. Im MIT-Fusionsreaktor Alcator C-Mod haben sie erfolgreich eine Methode getestet, das Fusionsplasma mit Funkwellen besser in der Schwebe zu halten.

Forscher des Massachusetts Institute of Technology (MIT) haben eine wichtige Entdeckung auf dem Weg zur Kernfusion gemacht. Im hauseigenen Fusionsreaktor Alcator C-Mod haben sie erfolgreich eine Methode getestet, Turbulenzen im Fusionsplasma zu vermeiden. Das ist notwendig, um zu verhindern, dass das Plasma die Wände der Fusionskammer berührt und dabei abkühlt. Dazu haben die Forscher Yijun Lin und John Rice hochenergetische Funkwellen eingesetzt.

Kontrollraum des Alcator-C-Mod-Reaktors (Foto: MIT)
Kontrollraum des Alcator-C-Mod-Reaktors (Foto: MIT)
Die Forscher beschossen das Plasma mit Funkwellen mit Frequenzen zwischen 50 und 80 Megahertz, die eine Leistung von mehreren Millionen Watt haben, erklärte Earl Marmar, Leiter des Alcator-Projekts am Plasma Science and Fusion Center (PSFC) des MIT, dem US-Fachmagazin Electronic Engineering Times. So sei es gelungen, die Turbulenzen im Plasma zu verringern und den Plasmafluss in der Kammer zu verbessern.

Ihre Entdeckung sei gerade rechtzeitig für den im Bau befindlichen experimentellen Fusionsreaktor ITER gekommen, sagte Lin. Die Theoretiker waren überrascht, da es keine theoretische Grundlage dafür gibt, dass der Ansatz so gut funktioniert. Die Entdeckung sei ein wichtiger Schritt für die Weiterentwicklung der Fusion, so Marmar, da die derzeit genutzten Methoden, um das Plasma zu zähmen, in größeren Reaktoren wie dem ITER, der gerade in Frankreich gebaut wird, nicht angewendet werden können. Die Forscher hatten mehrere Jahre mit den Funkwellen experimentiert, um zu dem Ergebnis zu kommen, das sie in der aktuellen Ausgabe der von der American Physical Society herausgegeben Zeitschrift Physical Review Letters vorstellen.

Der Umgang mit dem Plasma in der Fusionskammer ist ein heikler Punkt bei der Kernfusion: Damit zwei Wasserstoffatomkerne miteinander fusionieren und Energie freisetzen können, müssen extreme Bedingungen gegeben sein. In der Sonne, die ihre Energie aus der Kernfusion bekommt, herrscht ein Druck von 200 Milliarden Bar und eine Temperatur von 15 Millionen Grad Celsius. Auf der Erde lässt sich ein so immenser Druck nicht erzeugen, weshalb die Temperatur deutlich höher sein muss.

Solche Bedingungen werden in einer sogenannten Tokamak erzeugt. Das ist eine toroidale Vakuumkammer, die von Magnetspulen umgeben ist. Die Magnetfelder halten das ultraheiße Plasma aus Wasserstoffisotopen in der Schwebe. Kommt das Plasma jedoch mit den Reaktorwänden in Berührung, kühlt es zu sehr ab und kann die Wände beschädigen. Das soll die Entwicklung der MIT-Forscher verhindern.

Wird die Abstoßung von zwei positiv geladenen Wasserstoffatomkernen überwunden und sie verschmelzen zu einem Heliumkern, wird sehr viel Energie frei. Bei der Fusion der Wasserstoffisotope Deuterium und Tritium reichen 2,5 Milligramm Brennstoff aus, um eine Energie von einem Gigajoule freizusetzen.

In den bisherigen Forschungsreaktoren ist es jedoch noch nicht gelungen, mehr Energie zu gewinnen, als aufgewendet werden muss, um die Fusion anzustoßen und zu erhalten.  (wp)


Verwandte Artikel:
Tri Alpha Energy: Google entwickelt Algorithmus für die Fusionsforschung   
(26.07.2017, https://glm.io/129128 )
Kilopower: Ein Kernreaktor für Raumsonden   
(08.12.2017, https://glm.io/131418 )
Kernfusion: Angewandte Science-Fiction   
(13.02.2017, https://glm.io/126018 )
Maschinelles Lernen: Gesichtserkennung ist zuverlässig - bei weißen Männern   
(12.02.2018, https://glm.io/132709 )
Hitachi stellt Produktion von Plasma-TV-Panels ein    
(18.09.2008, https://glm.io/62490 )

Links zum Artikel:
American Physical Society (.org): http://www.aps.org/
ITER (.org): http://www.iter.org/
Massachusetts Institute of Technology: http://www.mit.edu/
MIT - Alcator C-Mod (.edu): http://www.psfc.mit.edu/research/alcator/
MIT - Plasma Science and Fusion Center (PSFC) (.edu): http://www.psfc.mit.edu/index.html

© 1997–2019 Golem.de, https://www.golem.de/