Original-URL des Artikels: https://www.golem.de/0512/42407.html    Veröffentlicht: 28.12.2005 15:36    Kurz-URL: https://glm.io/42407

GIMPS-Projekt findet 43. Mersennsche Primzahl

Mersennsche Primzahl mit mehr als 9 Millionen Stellen entdeckt

Bereits am 15. Dezember 2005 entdeckte ein Team der Central Missouri State University um Dr. Curtis Cooper und Dr. Steven Boone im Rahmen des GIMPS-Projektes die 43. und bislang größte Mersennsche Primzahl: 2^30.402.457 - 1. Mittlerweile wurde die Primeigenschaft der Zahl bestätigt.

Die neue Primzahl hat über 9,152 Millionen Stellen und verfehlt damit knapp die Qualifikation für eine Prämie in Höhe von 100.000 US-Dollar, die von der Electronic Frontier Foundation für die erste Primzahl mit mehr als 10 Millionen Stellen ausgesetzt wurde.

Die Wissenschaftler beteiligen sich zum Teil seit sieben Jahren am GIMPS-Projekt und koordinieren mehr als 700 PCs auf der Suche nach Primzahlen.

Primzahlen sind natürliche Zahlen außer 1, die nur durch eins und sich selbst teilbar sind. Die Mersennschen Primzahlen, benannt nach dem französischen Mönch und Mathematiker Marin Mersenne (1588-1648), müssen sich zudem nach der Gleichung p=2^q-1 darstellen lassen, wobei auch q eine Primzahl sein muss.

Primzahlen spielen heute beispielsweise in der Kryptographie eine wesentliche Rolle.  (ji)


Verwandte Artikel:
Weltrekord: Forscher zerlegen riesige Zahl in Primfaktoren   
(10.05.2005, https://glm.io/37944 )
TU Berlin sucht bislang größte Mersennesche Primzahl   
(09.06.2004, https://glm.io/31674 )
Weltrekord: Riesige Zahl in Primfaktoren zerlegt   
(05.02.2002, https://glm.io/18112 )

Links zum Artikel:
GIMPS (.org): http://www.mersenne.org/

© 1997–2019 Golem.de, https://www.golem.de/