Original-URL des Artikels: https://www.golem.de/news/xfel-riesenkamera-nimmt-filme-von-atomen-auf-1608-122722.html    Veröffentlicht: 19.08.2016 12:00    Kurz-URL: https://glm.io/122722

Xfel

Riesenkamera nimmt Filme von Atomen auf

In Hamburg und Schleswig-Holstein entsteht derzeit eines der größten und leistungsfähigsten Aufnahmesysteme der Welt: Der European Xfel ist ein Röntgenlaser, der Atome und chemische Reaktionen abbilden kann.

Diese Kamera ist gigantisch: Mehrere Kilometer ist sie lang. Die Belichtungszeit bemisst sich in Femtosekunden, die Auflösung liegt im atomaren Bereich. Der abgelichtete Gegenstand wird zwar zerstört, aber das Aufnahmesystem ist schneller.

Der European Xfel - eine Abkürzung für X-Ray Free-Electron Laser (Röntgen-Freie-Elektronen-Laser) - ist eine Forschungsanlage, die zurzeit in Norddeutschland gebaut wird. Der Anfang der Anlage befindet sich in Hamburg, am Deutschen Elektronen-Synchrotron (Desy), das Ende in Schenefeld in Schleswig-Holstein. Golem.de hat die Experimentierhalle in Schenefeld besucht.

Der European Xfel ist eine Kamera und ein Mikroskop

Die Anlage erzeugt ultrakurze, hochenergetische Röntgenblitze, um Einzelbilder und Filme von Molekülen oder chemischen Reaktionen aufzunehmen. Damit sei die Anlage "ein gigantisches Mikroskop und eine gigantische Kamera", sagte European-Xfel-Sprecher Bernd Ebeling Golem.de. An der Anlage werde künftig Grundlagenforschung in unterschiedlichen wissenschaftlichen Disziplinen betrieben: Physik und Astrophysik, Chemie, Nanotechnologie, Energieforschung, aber auch Biologie, Medizin oder Pharmazie.

Materialforscher etwa können die Eigenschaften neuer Materialien erforschen. Chemiker sollen schnell ablaufende Reaktionen Schritt für Schritt analysieren. Die Untersuchung von Prozessen in Solar- oder Brennstoffzellen könnte zu Verbesserungen führen.

Einzelne Moleküle werden abgebildet

Biologen und Mediziner sollen am European Xfel Proteine, Zellen oder molekulare Abläufe beobachten. Bisher müssen sie, um etwa Proteine untersuchen zu können, Kristalle aus den Proteinmolekülen züchten. Der Kristall wird dann mit einem Röntgenblitz angestrahlt. Am European Xfel können die Kristalle kleiner sein als bisher. Die Forscher hoffen, dass künftig auch ein einzelnes Molekül ausreicht. Die Untersuchung von Biomolekülen hilft Wissenschaftlern, Krankheitsverläufe zu verstehen und möglicherweise zu beeinflussen. Krankheiten wie Alzheimer werden durch Proteine ausgelöst, die sich unnormal verhalten.


All diese Experimente werden in Schenefeld durchgeführt. Der Anfang der Anlage ist jedoch knapp dreieinhalb Kilometer entfernt: Am Desy werden dafür Elektronenpakete erzeugt. Diese werden in einen 1,7 Kilometer langen Linearbeschleuniger injiziert und bis fast auf Lichtgeschwindigkeit beschleunigt. Das übernehmen supraleitende Resonatoren, die mit flüssigem Helium auf minus 271 Grad gekühlt werden.

Der Tunnel verzweigt sich

Die Elektronenpakete sausen dann in Richtung Experimentierhalle. Bis dahin verzweigt sich der Tunnel mehrfach. Dadurch können in der Halle mehrere Experimente mit Röntgenpulsen versorgt werden. Anschließend passieren die Elektronen die Undulatoren, die die Röntgenpulse erzeugen. Ein solcher Undulator ist gut 200 Meter lang und besteht aus Permanentmagneten, die abwechselnd polarisiert hintereinander angeordnet sind. Die Magnete zwingen die Elektronenpakete auf eine Slalombahn.

Das Undulieren, das Hin- und Herpendeln der Elektronen, führt dazu, dass sie Röntgenblitze mit Lasereigenschaften emittieren. Die Blitze werden zu den Experimenten geleitet. Insgesamt stehen drei Undulatoren zur Verfügung, von denen zwei baugleich sind. Alle drei können Röntgenstrahlung in verschiedenen Wellenlängen erzeugen. Die Wellenlänge hängt von der Stärke des Magnetfelds im Undulator ab - das Feld wird durch den Abstand der beiden Schienen über und unter dem Elektronenstrahl verändert. Die Elektronen werden schließlich in einem Absorber aufgefangen.

Zwei Experimente pro Röhre

In der Halle enden fünf Tunnel. Aus jedem kommen zwei Röhren mit einem Durchmesser von etwa 10 cm. Jede dieser Röhren versorgt ein wissenschaftliches Instrument mit den Laserpulsen. Allerdings nicht gleichzeitig: Wird an einem Instrument experimentiert, ist das andere nicht in Betrieb.

Experimentieren am European Xfel heißt, eine Probe mit solchen Röntgenblitzen zu beschießen.

Die Aufnahme ist schneller als die Zerstörung der Probe

Röntgenstrahlung hat eine sehr kurze Wellenlänge. Das ergibt eine hohe Auflösung: "Je kürzer die Wellenlänge des Lichts, desto kleiner die Dinge, die wir uns damit anschauen können", sagt Ebeling. Sprich: Die Auflösung liegt im atomaren Bereich.

Die Blitze sind zudem extrem kurz: Pro Sekunde kommen zehn Folgen mit je 2.700 Pulsen an, also 27.000 Pulse pro Sekunde. Ein Puls dauert wenige Femtosekunden - eine Femtosekunde ist eine Billiardstel Sekunde. Das bedeutet, die Belichtungszeit ist sehr kurz, was es ermöglicht, auch sehr schnelle Vorgänge scharf abzubilden, etwa die Reaktionsschritte einer chemischen Reaktion.

Das Atom bewegt sich nicht

Die Blitze seien so kurz, dass ein "Standbild von Materie" aufgenommen werde, erklärt Ulf Zastrau, wissenschaftlicher Leiter des Instruments High Energy Density Science (HED) im Gespräch mit Golem.de. In dieser Zeit kreise ein Elektron einige Dutzend Mal um den Atomkern, ein Atom in einem Festkörper bewege sich nicht.

Zastrau will am European Xfel Experimente durchführen, die die Zustände im Inneren von Planeten nachbilden, etwa im Erdkern. Da sich diese Zustände nicht vor Ort erforschen lassen, muss der Forscher sie in seinem Experiment simulieren. "Die einzige Chance, die wir haben, ist, ein kleines Stückchen von dem gleichen Material zu nehmen und dann Bedingungen herzustellen, die so ähnlich sind, wie wir glauben, dass es dort aussieht."

Energiedichte wie im Erdkern

Für Studien über den Erdkern will Zastrau Eisenproben mit Röntgenblitzen beschießen. "Wir deponieren mit diesem ganz kurzen Energiepuls diese ganze Energie dort hinein. Wir haben quasi von 0 auf 100 die ganze Energie in diesem System. Das ist dann ein Zustand, der noch die gleiche Dichte wie vorher hat, weil sich nichts bewegen konnte. Aber von der Energiedichte her ist das ein Äquivalent vom Erdkern. Das können wir in dem Moment studieren."

Der Puls ist so energiereich, dass er die Probe zerstört. Das macht aber nichts: Die Energie werde in einer Zeitskala deponiert, "auf der das Eisen gar nicht merkt, was mit ihm passiert. Die Eisenatome haben keine Chance, sich in dieser Zeit irgendwie zu bewegen", sagt Zastrau. Die Lichtgeschwindigkeit ist höher als die mechanische Bewegung im Molekül. Die Aufnahme erfolgt, bevor die Atome auseinanderfliegen. Diffraction before Destruction, Aufnahme des Bildes vor der Zerstörung des Moleküls, wird dieser Effekt genannt.

Der Röntgenpuls wird gestreut

Aufnahme heißt: Der Röntgenpuls trifft auf die Probe und wird zum Teil gestreut. Es entsteht ein Beugungsmuster, das der Detektor auffängt. Aus diesen Mustern kann dann ein Bild errechnet werden, beispielsweise die Struktur eines Biomoleküls.

Die Detektoren sind Kameras, die im Röntgenbereich arbeiten. Sie müssen sehr leistungsfähig sein, da sie bis zu 27.000 Bilder in der Sekunde auswerten. Dabei vergehen zwischen zwei Blitzen gerade einmal 220 Nanosekunden - das ist zu kurz zum Speichern. Jeder Pixel eines Detektors verfügt deshalb über Kondensatoren, die als Zwischenspeicher dienen.

Die Zwischenspeicher werden ausgelesen und die Daten gespeichert. Aber nicht alle: Zu einem Experiment gehört ein Detektor, der bestimmt, welche Daten gespeichert werden. Er überwacht beispielsweise, ob die Pulsenergie über einem bestimmten Schwellenwert liegt, ob die Proben richtig injiziert oder richtig getroffen wurden. Nur wenn dieser Detektor meldet, dass das Signal gut war, wird auch gespeichert. Trotz dieser Auswahl wird ein Detektor in der Sekunde 10 bis 40 GByte an Daten erzeugen.

Soweit die Theorie. Ob das alles klappt, wird sich im kommenden Jahr zeigen.

2017 geht es los

Der Bau der Anlage hat 2009 begonnen. Die Baukosten betragen knapp 1,2 Milliarden Euro (bezogen auf das Jahr 2005). Den größten Anteil, 58 Prozent, übernimmt Deutschland, gefolgt von Russland mit knapp 30 Prozent. Die übrigen neun beteiligten Länder tragen jeweils zwischen einem und drei Prozent der Kosten.

Die Tunnel verlaufen in einer Tiefe zwischen 6 und 38 Metern und wurden von zwei Tunnelbohrmaschinen - Ameli (Abkürzung für: Am Ende Licht) und Tula (Tunnel für Laser) - gegraben. Der Tunnel unterquert dabei auch eine Wohnsiedlung in Hamburg. Fertiggestellt wurde das Tunnelsystem, das mit Verzweigungen 5,8 Kilometer lang ist, im Jahr 2012.

Es gibt noch Platz für Experimente

Derzeit werden in der Experimentierhalle in Schenefeld sechs Instrumente gebaut. Die beiden ersten sollen im Sommer 2017 fertig sein und starten. Das von Zastrau betreute HED wird nicht dabei sein - das wird erst 2018 einsatzbereit sein. In der Mitte der Halle ist noch Platz für weitere wissenschaftliche Instrumente: Zwei Tunnel sind noch nicht belegt. Es stehen also noch vier freie Plätze zur Verfügung. Zudem könnten noch kleinere Instrumente gebaut werden, so dass bis zu 15 Instrumente in der Halle Platz finden.


Bei der Konstruktion der Experimente müssen unterschiedlichen Anforderungen beachtet werden. Bei Zastraus HED etwa reicht eine einfache Strahlenisolierung mit Bleiplatten nicht aus. Seine Proben werden teilweise mit einem Laser komprimiert, um eine höhere Dichte in der Probe zu erzielen. Durch diese Schockkompression wird die Materie derart angeregt, dass sie Röntgen- und Teilchenstrahlung emittiert. Deshalb brauche das Experiment Wände aus einem speziellen Strahlenschutzbeton, erzählt der Wissenschaftler.

Der Detektor steht auf einem Luftkissen

Sein künftiger Nachbar am Materialforschungsexperiment Materials Imaging and Dynamics (MID) benötigt einen Detektor, der in verschiedenen Winkeln zur Probe eingerichtet werden kann. Das lässt sich aber nicht mit Schienen oder Rädern realisieren, weil diese vibrieren könnten. Der Detektor muss auf der Größe eines Pixels stabil stehen - ein Pixel darf sich also vom einen zum nächsten Bild nicht bewegen.

Dazu bekommt das MID einen sehr glatten Boden aus Marmor. Der Detektor steht auf einem großen, schweren Fuß, unter dem Luftkissen befestigt sind. Wenn der Fuß bewegt werden soll, werden die Luftkissen aktiviert. Dann gleitet der Fuß über den glatten Marmor. Werden die Luftkissen ausgeschaltet, steht der Fuß fest auf dem Marmorboden, der wiederum auf einem besonders festen Beton verlegt ist.

Am European Xfel darf jeder forschen

So erhalten die Materialforscher die Bedingungen, die sie für ihre Experimente brauchen. Die einzige Voraussetzung, um diese durchführen zu können, sei wissenschaftliche Exzellenz, erzählt Ebeling - also wie interessant das Projekt ist. Am European Xfel können demnach Forscher aus aller Welt arbeiten, nicht nur solche aus den Mitgliedstaaten.

Im Herbst 2016 startet die Inbetriebnahme. Der erste Elektronenstrahl kommt einige Monate später, noch etwas später der erste Röntgenstrahl. Das werde ein wichtiger Moment, sagt Ebeling. "Das heißt nämlich, dass die Anlage selbst von Anfang bis Ende funktioniert."  (wp)


Verwandte Artikel:
Röntgenlaser: Der Xfel wird eröffnet   
(01.09.2017, https://glm.io/129821 )
First Lasing: Xfel erzeugt erste Röntgenlaserpulse   
(04.05.2017, https://glm.io/127639 )
Cern: Der LHC ist zurück aus der Winterpause   
(24.05.2017, https://glm.io/128003 )
Quantenmechanik: Malen nach Zahlen für die weltbesten Mathematiker   
(05.04.2017, https://glm.io/127108 )
Hyperschallgeschwindigkeit: Projektil schießt sich durch den Boden   
(09.03.2018, https://glm.io/133257 )

© 1997–2019 Golem.de, https://www.golem.de/