Original-URL des Artikels: https://www.golem.de/news/parsey-mcparseface-google-gibt-extrem-guten-syntax-parser-frei-1605-120898.html    Veröffentlicht: 13.05.2016 13:40    Kurz-URL: https://glm.io/120898

Parsey McParseface

Google gibt extrem guten Syntax-Parser frei

Zum Erkennen natürlicher Sprache hat Google ein neues Modell zum Parsen der Syntax entwickelt und mit seinem Deep-Learning-Framework Tensorflow implementiert. Der daraus erstellte Englisch-Parser Parsey McParseface soll die derzeit beste maschinelle Erkennungsrate für Syntaxbäume aufweisen.

Die Forschungsabteilung von Google hat ein neues Modell zum Erkennen der Syntax natürlicher Sprache (PDF) entwickelt und in sein eigenes Framework Tensorflow implementiert. Das so entstandene neuronale Netz Syntaxnet kann frei wiederverwendet werden. Google selbst hat damit den Englisch-Parser Parsey McParseface erstellt, der nun ebenfalls frei zur Verfügung steht.

Weltweit bester Parser

Mit dem etwas ungewöhnlichen Namen spielt Google offensichtlich auf Boaty McBoatface an, einen Namensvorschlag für ein neues britisches Polarforschungsschiff. Zum Trainieren des Parsers haben die Beteiligten auf die Standardkorpora der Penn Treebank, Onto Notes sowie der English Web Treebank zurückgegriffen. In Benchmarks mit Sätzen aus Zeitungen habe Parsey McParseface die inneren Abhängigkeiten und damit die syntaktischen Strukturen der getesteten Sätze zu über 94 Prozent korrekt erkannt. Das sei die derzeit beste Erkennungsrate einer Maschine für Englisch.

Die Übereinstimmungsrate zum Annotieren der Syntaxbäume durch darauf trainierte Sprachwissenschaftler schätzt Google auf etwa 96 bis 97 Prozent. Die Rate von Personen, die darin keine Übung haben, fällt wahrscheinlich deutlich geringer aus. Dies lege nahe, dass Maschinen langsam menschliche Leistungen erzielten. Allerdings gelte das nur für wohlgeformte und damit eher einfache Sätze. Die Rate für Sätze aus Googles Webtreebank liege bei lediglich 90 Prozent.

Die größten Probleme zum korrekten Erkennen bereiten Google zufolge zurzeit noch jene Sätze, die ein gewisses Weltwissen und Kontext voraussetzen. An diesem Problem will das Team weiter arbeiten und Methoden entwickeln, mit denen dieses Weltwissen maschinell erlernt werden kann.

Neuronales Netz verarbeitet Ambiguitäten

Syntaxnet arbeitet zunächst wie viele andere Systeme auch und weist nach der entsprechenden Trainingsphase Wörtern ihre Wortarten über ein Lexikon zu. Anschließend versucht der Parser, einzelne Abhängigkeiten innerhalb des Satzes zu erkennen, also etwa direktes und indirektes Objekt einem Verb zuzuweisen. Dies geschieht schrittweise, vergleichbar dem Lesen eines Textes von links nach rechts.

Mögliche Doppeldeutigkeiten eines Satzes werden dabei mit Hilfe des neuronalen Netzes gelöst. Zu jedem Zeitpunkt des Parsingvorgangs gibt es verschiedene Entscheidungsmöglichkeiten, einen Syntaxbaum aufzubauen, das neuronale Netz ordnet den Möglichkeiten dann Wahrscheinlichkeiten für ihre Plausibilität zu. Mittels der sogenannten Beam-Suche werden dabei möglichst lange verschiedene Hypothesen parallel zueinander aufrechterhalten und gegeneinander abgewogen. So können auch noch relativ spät im Parsevorgang mögliche Fehler erkannt und korrigiert werden.

Der Quellcode von Syntaxnet und Parsey McParseface steht auf Github bereit. Dort erläutert Google auch relativ ausführlich, wie mit Hilfe eigener Daten aus Baumdatenbanken das Modell genutzt werden kann, um selbst einen Parser zu erstellen.  (sg)


Verwandte Artikel:
Urheberrecht: Bär lehnt Leistungsschutzrecht strikt ab   
(10.03.2018, https://glm.io/133260 )
Tensorflow: Das US-Militär nutzt KI-Systeme von Google   
(07.03.2018, https://glm.io/133194 )
Knowledge Graph: Google-App findet Antworten auf "echte" Fragen   
(17.11.2015, https://glm.io/117489 )
Finspy: Neuer Staatstrojaner-Exploit in RTF-Dokument gefunden   
(13.09.2017, https://glm.io/130025 )
Wintersport: Roboter Curly spielt Curling   
(08.03.2018, https://glm.io/133219 )

© 1997–2019 Golem.de, https://www.golem.de/