Die Aufnahme ist schneller als die Zerstörung der Probe
Röntgenstrahlung hat eine sehr kurze Wellenlänge. Das ergibt eine hohe Auflösung: "Je kürzer die Wellenlänge des Lichts, desto kleiner die Dinge, die wir uns damit anschauen können", sagt Ebeling. Sprich: Die Auflösung liegt im atomaren Bereich.
Die Blitze sind zudem extrem kurz: Pro Sekunde kommen zehn Folgen mit je 2.700 Pulsen an, also 27.000 Pulse pro Sekunde. Ein Puls dauert wenige Femtosekunden - eine Femtosekunde ist eine Billiardstel Sekunde. Das bedeutet, die Belichtungszeit ist sehr kurz, was es ermöglicht, auch sehr schnelle Vorgänge scharf abzubilden, etwa die Reaktionsschritte einer chemischen Reaktion.
Das Atom bewegt sich nicht
Die Blitze seien so kurz, dass ein "Standbild von Materie" aufgenommen werde, erklärt Ulf Zastrau, wissenschaftlicher Leiter des Instruments High Energy Density Science (HED) im Gespräch mit Golem.de. In dieser Zeit kreise ein Elektron einige Dutzend Mal um den Atomkern, ein Atom in einem Festkörper bewege sich nicht.
Zastrau will am European Xfel Experimente durchführen, die die Zustände im Inneren von Planeten nachbilden, etwa im Erdkern. Da sich diese Zustände nicht vor Ort erforschen lassen, muss der Forscher sie in seinem Experiment simulieren. "Die einzige Chance, die wir haben, ist, ein kleines Stückchen von dem gleichen Material zu nehmen und dann Bedingungen herzustellen, die so ähnlich sind, wie wir glauben, dass es dort aussieht."
Energiedichte wie im Erdkern
Für Studien über den Erdkern will Zastrau Eisenproben mit Röntgenblitzen beschießen. "Wir deponieren mit diesem ganz kurzen Energiepuls diese ganze Energie dort hinein. Wir haben quasi von 0 auf 100 die ganze Energie in diesem System. Das ist dann ein Zustand, der noch die gleiche Dichte wie vorher hat, weil sich nichts bewegen konnte. Aber von der Energiedichte her ist das ein Äquivalent vom Erdkern. Das können wir in dem Moment studieren."
Der Puls ist so energiereich, dass er die Probe zerstört. Das macht aber nichts: Die Energie werde in einer Zeitskala deponiert, "auf der das Eisen gar nicht merkt, was mit ihm passiert. Die Eisenatome haben keine Chance, sich in dieser Zeit irgendwie zu bewegen", sagt Zastrau. Die Lichtgeschwindigkeit ist höher als die mechanische Bewegung im Molekül. Die Aufnahme erfolgt, bevor die Atome auseinanderfliegen. Diffraction before Destruction, Aufnahme des Bildes vor der Zerstörung des Moleküls, wird dieser Effekt genannt.
Der Röntgenpuls wird gestreut
Aufnahme heißt: Der Röntgenpuls trifft auf die Probe und wird zum Teil gestreut. Es entsteht ein Beugungsmuster, das der Detektor auffängt. Aus diesen Mustern kann dann ein Bild errechnet werden, beispielsweise die Struktur eines Biomoleküls.
Die Detektoren sind Kameras, die im Röntgenbereich arbeiten. Sie müssen sehr leistungsfähig sein, da sie bis zu 27.000 Bilder in der Sekunde auswerten. Dabei vergehen zwischen zwei Blitzen gerade einmal 220 Nanosekunden - das ist zu kurz zum Speichern. Jeder Pixel eines Detektors verfügt deshalb über Kondensatoren, die als Zwischenspeicher dienen.
Die Zwischenspeicher werden ausgelesen und die Daten gespeichert. Aber nicht alle: Zu einem Experiment gehört ein Detektor, der bestimmt, welche Daten gespeichert werden. Er überwacht beispielsweise, ob die Pulsenergie über einem bestimmten Schwellenwert liegt, ob die Proben richtig injiziert oder richtig getroffen wurden. Nur wenn dieser Detektor meldet, dass das Signal gut war, wird auch gespeichert. Trotz dieser Auswahl wird ein Detektor in der Sekunde 10 bis 40 GByte an Daten erzeugen.
Soweit die Theorie. Ob das alles klappt, wird sich im kommenden Jahr zeigen.
Oder nutzen Sie das Golem-pur-Angebot
und lesen Golem.de
- ohne Werbung
- mit ausgeschaltetem Javascript
- mit RSS-Volltext-Feed
Xfel: Riesenkamera nimmt Filme von Atomen auf | 2017 geht es los |
Als ob du in der Lage waerst dies zu beurteilen ... :D
Ich vermute mal, die Aufnahmedauer ist stark begrenzt und sie jagen es zuerst in direkt...
https://www.youtube.com/watch?v=1oXRVEaoeaE https://www.youtube.com/watch?v=aK1iFMsbKGo
Blödsinn. Der Untersuchungsgegenstand ist das was du untersuchen willst. Eisenatome in...