Abo
  • Services:
Anzeige
Der Chip aus einer Quantenmaschine, an der Google mitarbeitet
Der Chip aus einer Quantenmaschine, an der Google mitarbeitet (Bild: Erik Lucero, CC BY-SA 3.0)

Wissenschaft: Wenn der Quantencomputer spazieren geht

Der Chip aus einer Quantenmaschine, an der Google mitarbeitet
Der Chip aus einer Quantenmaschine, an der Google mitarbeitet (Bild: Erik Lucero, CC BY-SA 3.0)

Quantenrechner sind wie edle Rennpferde: enorm schnell, aber gleichzeitig sehr empfindlich. Forscher versuchen deshalb, ihnen ein Gerüst zu verpassen, das sie robuster macht.

Sie versprechen, die kompliziertesten Aufgaben in kürzester Zeit zu lösen - und ganz nebenbei einen großen Teil der Verschlüsselungsverfahren zu knacken. Doch obwohl die Wissenschaft nun seit Jahren den Durchbruch des Quantencomputing verspricht, ist davon in der Informationstechnik nichts zu spüren. Das liegt unter anderem daran, dass sich das Mooresche Gesetz besser hält als selbst von Optimisten erhofft. Silizium-Strukturen werden im Jahresrhythmus kleiner, und das Ende wird immer wieder nach hinten verschoben.

Anzeige

Doch schuld sind auch die Gesetze der Quantenphysik selbst - vor allem die Tatsache, dass sie sich partout nur auf mikroskopisch kleine Maßstäbe beziehen und ihre Erscheinungen höchst instabil sind. Zwar lassen sich an Teilchen dank der Quantenmechanik wundersame Tricks wie die Verschränkung ausführen (dabei ändern beide Partner ihren Zustand parallel, egal, wie weit sie voneinander entfernt sind), doch diese Eigenschaften sind stets von Dekohärenz bedroht - einem nicht vorherzusagenden Zusammenbruch der Wahrscheinlichkeitsverteilung, die die Grundlage des quantenphysikalischen Zustands bildet.

Echte Gegenmittel gibt es nicht - ohne Dekohärenz gäbe es unsere Wirklichkeit nicht, in der sich Gegenstände stets vorhersehbar verhalten, weil sie nicht von einer Wellenfunktion beschrieben werden, sondern von exakt messbaren Größen wie Raum und Zeit. Die Forscher können also nur versuchen, die Kohärenz, also das Vorhandensein von Quanten-Eigenschaften, so lange wie möglich auszudehnen. Ein Weg dorthin besteht darin, das System möglichst gut gegen seine Umwelt abzuschirmen und dabei in die Nähe seines Grundzustandes zu bringen. Doch das mag für die Forschung an Quantencomputern hinreichend sein - einen realen Quantenrechner wird man nicht teuer in der Nähe des Nullpunkts betreiben wollen.

System mit eingebauter Fehlertoleranz

Der interessantere Weg besteht deshalb darin, das komplette System mit eingebauter Fehlertoleranz zu konstruieren. Dabei geht es nicht etwa darum, Operationen mehrfach auszuführen und dann die Ergebnisse zu vergleichen - vielmehr versucht man, physikalische Prozesse zu finden, die nur auf ganz bestimmte Weise ablaufen können.

Ein Kandidat dafür ist das topologische Quantencomputing. Die Topologie, ein Teilgebiet der Mathematik, erforscht, welche Eigenschaften mathematischer Strukturen auch dann noch erhalten bleiben, wenn man die Strukturen selbst einer stetigen Veränderung unterwirft. Stetige Funktionen dürften noch aus der Schulmathematik bekannt sein, anschaulich aus der Tatsache, dass sie keine Sprünge besitzen. In der Topologie sind Abbildungen stetig, bei denen die grundlegende Struktur erhalten bleibt. Aus einer Henkeltasse könnte man durch eine stetige Abbildung einen Donut erzeugen - aus einer Kartoffel nicht. Spannend für Quantencomputer-Konstrukteure ist: Unter einer topologischen Umformung bleibt die Information Loch oder kein Loch erhalten. Allerdings muss man sich dabei nach heutigem Kenntnisstand auf zwei Dimensionen beschränken.

Eine Alternative dazu ist das geometrische Quantencomputing. Im Wissenschaftsmagazin Nature beschreiben chinesische Forscher, wie ihnen die praktische Umsetzung dieses Prinzips gelungen ist. Im Grunde stellt geometrisches Quantencomputing eine Änderung des Blickwinkels dar. Wir betrachten nicht mehr, welchen Zustand ein Teilchen hat, sondern auf welchem Weg in der Raumzeit sich diese Eigenschaften ändern - und interpretieren diese Veränderung als eine Art Wanderung. Je nach Wanderweg ist das Endergebnis ein anderes - und die dadurch vorgenommene Transformation ersetzt die UND-, ODER- und NOT-Gates eines Computers.

Stellen Sie sich zum Beispiel vor, dass Sie in einer Ihnen unbekannten Stadt durch die Straßen laufen. Plötzlich gelangen Sie an Ihren Ausgangspunkt zurück, kommen aber aus der entgegengesetzten Richtung. Die Wanderung (die Transformation) hat aus geometrischer Sicht Ihre Vorder- und Ihre Rückseite vertauscht, es hat also im logischen Sinn eine Negation stattgefunden. Im Nature-Paper zeigen die Forscher alle benötigten logischen Operationen, umgesetzt mit Hilfe der Spins von Elektronen in einem Festkörper. Solche Systeme, meinen die Forscher, sollten sich gut miteinander verknüpfen und skalieren lassen - und eventuell öffnen sie auch Wege zum topologischen Quanten-Computing, das als noch stabiler gilt.


eye home zur Startseite
MrTridac 02. Okt 2014

Aus dem Artikel: "Doch obwohl die Wissenschaft nun seit Jahren den Durchbruch des...

LesenderLeser 02. Okt 2014

Aber nicht die eine Frage! Bitte unbedingt erst "Hitchhikers Guide To Galaxys" lesen...

gisu 02. Okt 2014

Teilt sich mit Schrödingers Katze derzeit die Box, traut sich keiner so recht auf zu...



Anzeige

Stellenmarkt
  1. azh Abrechnungs- und IT-Dienstleistungszentrum für Heilberufe GmbH, Aschheim Raum München
  2. Deutsche Bundesstiftung Umwelt, Osnabrück
  3. Robert Bosch GmbH, Stuttgart-Feuerbach
  4. Gebr. Heller Maschinenfabrik GmbH, Nürtingen


Anzeige
Hardware-Angebote
  1. 17,99€ statt 39,99€
  2. ab 649,90€
  3. 100,99€ inkl. Abzug, Preis wird im Warenkorb angezeigt (Vergleichspreis 148€)

Folgen Sie uns
       


  1. Counter-Strike Go

    Bei Abschuss Ransomware

  2. Hacking

    Microsoft beschlagnahmt Fancy-Bear-Infrastruktur

  3. Die Woche im Video

    Strittige Standards, entzweite Bitcoins, eine Riesenkonsole

  4. Bundesverkehrsministerium

    Dobrindt finanziert weitere Projekte zum autonomen Fahren

  5. Mobile

    Razer soll Smartphone für Gamer planen

  6. Snail Games

    Dark and Light stürmt Steam

  7. IETF

    Netzwerker wollen Quic-Pakete tracken

  8. Surface Diagnostic Toolkit

    Surface-Tool kommt in den Windows Store

  9. Bürgermeister

    Telekom und Unitymedia verweigern Open-Access-FTTH

  10. Layton's Mystery Journey im Test

    Katrielle, fast ganz der Papa



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
Gaming-Monitor Viewsonic XG 2530 im Test: 240 Hertz, an die man sich gewöhnen kann
Gaming-Monitor Viewsonic XG 2530 im Test
240 Hertz, an die man sich gewöhnen kann
  1. LG 43UD79-B LG bringt Monitor mit 42,5-Zoll-Panel für vier Signalquellen
  2. SW271 Benq bringt HDR-Display mit 10-Bit-Panel
  3. Gaming-Bildschirme Freesync-Displays von Iiyama und Viewsonic

Moto Z2 Play im Test: Bessere Kamera entschädigt nicht für kürzere Akkulaufzeit
Moto Z2 Play im Test
Bessere Kamera entschädigt nicht für kürzere Akkulaufzeit
  1. Modulares Smartphone Moto Z2 Play kostet mit Lautsprecher-Mod 520 Euro
  2. Lenovo Hochleistungs-Akku-Mod für Moto Z
  3. Moto Z Schiebetastatur-Mod hat Finanzierungsziel erreicht

Razer Lancehead im Test: Drahtlose Symmetrie mit Laser
Razer Lancehead im Test
Drahtlose Symmetrie mit Laser
  1. Razer Blade Stealth 13,3- statt 12,5-Zoll-Panel im gleichen Gehäuse
  2. Razer Core im Test Grafikbox + Ultrabook = Gaming-System
  3. Razer Lancehead Symmetrische 16.000-dpi-Maus läuft ohne Cloud-Zwang

  1. Re: kein einziger meter

    superdachs | 20:34

  2. Re: warum kann man die RTT nicht mehr messen?

    Poison Nuke | 20:21

  3. Und wie führt man dann den code aus?

    honna1612 | 20:15

  4. Re: Cooles Thema aber...

    Der Held vom... | 20:07

  5. Re: Perfekt für Razer Kunden!

    Subotai | 19:57


  1. 12:43

  2. 11:54

  3. 09:02

  4. 16:55

  5. 16:33

  6. 16:10

  7. 15:56

  8. 15:21


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel