Abo
  • Services:
Anzeige
Aperture Robot Repair Demo
Aperture Robot Repair Demo (Bild: Valve)

Virtual Reality: Valves Render-Tricks für mehr Bildqualität und Leistung

Aperture Robot Repair Demo
Aperture Robot Repair Demo (Bild: Valve)

Foveated Rendering, Multi-GPU, Supersampling, Reprojection und ausgelassene Pixel: Valve hat diverse Techniken von VR erläutert, die entweder die Bildqualität oder die Geschwindigkeit steigern.

Eine der bestbesuchten Sessions auf der Games Developer Conference 2016 in San Francisco war erneut die von Valves Alex Vlachos: Unter dem Titel Advanced VR Rendering Performance sprach der Grafikprogrammierer über allerhand Render-Tricks, um Virtual Reality zu verbessern. Dazu zählen Leistungssteigerungen, um die Aperture Robot Repair Demo auf einem vier Jahre alten System flüssig darzustellen, zudem befürwortet er mehrere Grafikkarten in einem Rechner für mehr Bildqualität.

Anzeige

Grundsätzlich sollte jede Engine für Virtual Reality zwar Multi-GPU unterstützen, sagte der Grafikprogrammierer. Der Leistungsgewinn falle aber mit 30 bis 35 Prozent verglichen mit dem in Spielen zumeist genutzten Alternate Frame Rendering recht gering aus, und die CPU-Last steige. Der Geschwindigkeitszuwachs solle in höhere interne Render-Auflösungen und Kantenglättungsmodi investiert werden. Die Aperture Robot Repair Demo wird pro Auge mit 1.512 x 1.680 Pixeln mit 4x Multisampling Antialiasing gerendert und mit 1.080 x 1.200 Bildpunkten auf der Vive ausgegeben.

  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
Advanced VR Rendering Performance (Bild: Valve)

Mit mehreren GPUs kann die Bildqualität angehoben werden: Vlachos zeigte exemplarisch bis zu 2.116 x 2.352 Pixel - also Faktor 1,4 - mit 8x statt 4x Multisampling. Der umgekehrte Weg eignet sich für einzelne und vor allem schwächere Grafikkarten. Die können die Aperture Robot Repair Demo in 1.102 x 1.224 Pixeln mit 4x MSAA berechnen, was die Bildrate auf Kosten der Optik kräftig steigert: Die Source-2-Engine kann das dynamisch.

Um noch mehr Leistung herauszukitzeln, hat Valve sogenanntes Foveated Rendering integriert: Die Fovea, zu Deutsch Sehgrube, bietet das beste Auflösungsvermögen, also die größte Schärfe des menschlichen Sehapparates. Eine Idee ist daher, nur den mittleren Teil des Bildes mit voller Auflösung zu rendern und die Außenbereiche mit weniger Pixeln - Nvidia nennt das Multi Resolution Shading. Die Leistung steigt so um etwa 5 bis 10 Prozent.

  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
Advanced VR Rendering Performance (Bild: Valve)

Valves eigener Ansatz heißt Radial Density Masking, bei dem im peripheren Sichtfeld schachbrettartig Pixel nicht gerendert, sondern näherungsweise ergänzt werden. Diese Technik erreicht in der Aperture Robot Repair Demo einen Geschwindigkeitszuwachs von 10 bis 15 Prozent. Zusammen mit 992 x 1.102 Pixeln und 4x MSAA konnte Valve die Szene flüssig auf einer Geforce GTX 680 rendern - ohne diese Tricks braucht es eine Geforce GTX 970.

Sollten die notwenigen 90 fps auf einem Vive dennoch nicht gehalten werden können, hilft kurzfristig eine Asynchronous Reprojection, auch als Asynchronous Time Warp bezeichnet. Kann die Grafikkarte nicht innerhalb von 11,1 Millisekunden den nächsten Frame berechnen, wird ein bereits fertiges Bild mit neuen Rotationspositionsdaten versehen und ausgegeben. Das führt zwar an den Rändern für Darstellungsfehler und lässt nahe Objekte leicht ruckeln, ist für wenige Frames aber besser, als die Bildrate absinken zu lassen.

  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
  • Advanced VR Rendering Performance (Bild: Valve)
Advanced VR Rendering Performance (Bild: Valve)

Generell rät Vlachos dazu, 70 bis 90 Prozent der GPU zu nutzen, was das Render-Budget von 11,1 auf 10 bis 7,8 Millisekunden schrumpfen lässt. Damit bleibt genug Luft für kurzfristige Leistungsengpässe oder Hintergrundaufgaben wie den auch im VR-Betrieb weiter laufenden Windows-Desktop.


eye home zur Startseite
TobiVH 23. Mär 2016

Das mit dem Eyetracking ist mir schon bewusst, aber ich wollte damit betonen, dass damit...

it-fuzzy 22. Mär 2016

Meine (etwas ältere) Erfahrung mit 2 Grakas (AMD) war nicht so gut. Im Benchmark bin ich...



Anzeige

Stellenmarkt
  1. ROHDE & SCHWARZ Meßgerätebau GmbH, Memmingen
  2. eResearchTechnology (ERT), Estenfeld
  3. Daimler AG, Düsseldorf
  4. Daimler AG, Sindelfingen


Anzeige
Spiele-Angebote
  1. 8,99€
  2. 69,99€
  3. 11,99€

Folgen Sie uns
       


  1. Qualcomm

    Snapdragon 210 bekommt Android-Things-Unterstützung

  2. New Radio

    Qualcomm lässt neues 5G-Air-Interface testen

  3. Snapdragon X20

    Qualcomm kündigt 1,2-GBit/s-LTE-Modem an

  4. Asylpolitik

    "Mit dem Grundgesetz nicht vereinbar"

  5. Kryptomessenger

    Signal ab sofort ohne Play-Services nutzbar

  6. Refurbish

    Samsung will offenbar aufbereitete Galaxy Note 7 verkaufen

  7. Galaxy-A-Serie vs. P8 Lite (2017)

    Samsungs und Huaweis Kampf um die Mittelklasse

  8. Windows 10

    Microsoft bestätigt zweites großes Update für das Jahr 2017

  9. Drahtloses Laden

    Die Motherbox lädt das Smartphone

  10. Vodafone

    Schon kurze Verzögerung beim Upload nervt Mobilfunknutzer



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
München: Wie Limux unter Ausschluss der Öffentlichkeit zerstört wird
München
Wie Limux unter Ausschluss der Öffentlichkeit zerstört wird
  1. Fake News Für Facebook wird es hässlich
  2. Nach Angriff auf Telekom Mit dem Strafrecht Router ins Terrorcamp schicken oder so
  3. Soziales Netzwerk Facebook wird auch Instagram kaputt machen

Pure Audio: Blu-ray-Audioformate kommen nicht aus der Nische
Pure Audio
Blu-ray-Audioformate kommen nicht aus der Nische

Prey angespielt: Das Monster aus der Kaffeetasse
Prey angespielt
Das Monster aus der Kaffeetasse
  1. Bethesda Softworks Prey bedroht die Welt im Mai 2017
  2. Ausblicke Abenteuer in Andromeda und Galaxy

  1. Re: Gesetze die technologisch überholt sind

    derdiedas | 13:48

  2. Re: Alternative: Direkt ausweisen

    flasherle | 13:48

  3. Re: Netflix ist die absolute Frechheit!

    ckerazor | 13:48

  4. +1 Samsung A5: Android Security-Update-Garantie

    Kofl | 13:47

  5. Re: Fakten durcheinander gebracht

    Oktavian | 13:46


  1. 13:30

  2. 13:30

  3. 13:30

  4. 13:00

  5. 12:45

  6. 12:30

  7. 12:12

  8. 12:11


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel