Abo
  • Services:
Anzeige
Photonische Kristalle sollen wie die Oberfläche von Schmetterlingsflügeln funktionieren.
Photonische Kristalle sollen wie die Oberfläche von Schmetterlingsflügeln funktionieren. (Bild: Joe Klamar/Getty Images)

Transistoren: Rechnen nach dem Schmetterlingsflügel-Prinzip

Photonische Kristalle sollen wie die Oberfläche von Schmetterlingsflügeln funktionieren.
Photonische Kristalle sollen wie die Oberfläche von Schmetterlingsflügeln funktionieren. (Bild: Joe Klamar/Getty Images)

Photonische Kristalle sollen in Zukunft die trägen und energiehungrigen Transistoren ersetzen. Die Kristalle funktionieren wie die Oberfläche von Schmetterlingsflügeln.

Als Trägermedium für Informationen hat Licht gegenüber Elektronen eine Menge Vorteile: Es gibt kein Teilchen, das sich schneller bewegt als ein Photon. Licht hat weniger Wechselwirkungen als Elektronen mit der Umgebung und mit sich selbst. Elektronen sind zwar an sich schon winzig, doch Lichtteilchen brauchen zur Ausbreitung noch weniger Raum - und vor allem auch weniger Energie. Computer aus optischen Strukturen zu konstruieren, verspricht daher erhebliche Fortschritte. Allerdings fehlen Forschern und Industrie noch manche der Komponenten, die einen Computer ausmachen, und der fertigungstechnische Umgang mit Silizium funktioniert inzwischen derart perfekt, dass der Umstieg auf andere Technologien wie optische oder Quanten-Computer von Jahrzehnt zu Jahrzehnt verschoben wird.

Anzeige

Dieser Paradigmenwechsel scheint näher zu rücken. Im Fachmagazin Applied Physics Letters stellen Forscher der Züricher EPFL jetzt beispielsweise eine dem Transistor vergleichbare Struktur mit einer außergewöhnlich hohen Güte vor, die mit kleinsten Abmessungen herzustellen ist. Ihre auf den Prinzipien eines photonischen Kristalls beruhende Nano-Kavität ist im Grunde ein Loch - ein (zweidimensionales) Loch, das in der Lage ist, Photonen zu speichern wie das Gate eines Transistors.

Dass photonische Kristalle existieren, weiß man erst seit Ende der neunziger Jahre. Sie übertragen das Prinzip der Bandlücke vom Transistor in die Welt der Optik. Elektronische Halbleiter wären ohne Bandlücke nicht denkbar; in der Elektronik bezeichnet die Bandlücke all die Energieniveaus in einem Kristall, in denen sich Elektronen nicht aufhalten beziehungsweise nicht bewegen können. Ein photonischer Kristall ist nur in dem Sinne ein Kristall, dass er ebenfalls eine Bandlücke besitzt, eben für Photonen statt für Elektronen.

Das Prinzip der Natur nutzen

In einem photonischen Kristall kann sich Licht bestimmter Wellenlängen also unabhängig von seiner Bewegungsrichtung nicht ausbreiten. Damit gewinnen Ingenieure die Fähigkeit, Licht (das sich ansonsten stets geradlinig ausbreitet) durch einen Festkörper zu leiten. In der Natur gibt es dieses Prinzip ebenfalls: Dass Schmetterlingsflügel Licht in irisierender Form spiegeln, beruht zum Beispiel darauf. Auch das Farbenspiel des Opals wird von - allerdings nicht perfekt umgesetzten - periodischen Strukturen erzeugt, die mit photonischen Kristallen vergleichbar sind.

Damit ein Feststoff in dieser Weise nutzbar ist, muss man ihm im Labor ähnliche Strukturen aufprägen. Das klingt leichter, als es ist, denn für welche Wellenlängen des Lichts die Bandlücke entsteht, ist von der Strukturgröße abhängig. Bei den allerersten photonischen Kristallen haben die Forscher Millimeterlöcher in einen Keramikblock gebohrt; das Ergebnis war eine Bandlücke im Zentimeterbereich. Inzwischen ist man allerdings tatsächlich im Nanometerbereich angekommen, also bei den Wellenlängen sichtbaren Lichts. Erste Anwendungen photonischer Kristalle werden kommerziell vertrieben: So verbessern diese die gerichtete Abstrahlung einer Antenne, indem in unerwünschten Bereichen photonische Kristalle platziert werden, die die elektromagnetischen Wellen dort zuverlässig und selektiv abschirmen. Aus photonischen Kristallen lässt sich auch das weißeste Weiß herstellen: Eine Farbe, die wirklich jeden Lichtstrahl reflektiert.

Damit eine Ablösung des Transistors denkbar wird, ist allerdings eine Verbindung zur Silizium-Technik nötig. So befindet sich die winzige optische Kavität der EPFL-Forscher in einer Siliziumschicht auf einem Siliziumdioxid-Trägermaterial, wie man das von elektronischen Transistoren kennt. Dabei ist die Herstellung so gut gelungen, dass sich Photonen in der Struktur bis zu 500.000 Mal hin- und herbewegen (das ist der sogenannte Q-Faktor), bevor sie entkommen. Die Kavität funktioniert damit ähnlich wie das Gate eines Transistors, das sich von außen schalten lässt - und zwar mit einer extrem niedrigen Schaltleistung.


eye home zur Startseite
Zwangsangemeldet 13. Sep 2014

Ja, ich hab mir auch gedacht: "OK, dann braucht es sicher keine 350 Jahre mehr dafür"...

Pwnie2012 13. Sep 2014

Ja, aber der "Volksmund" versteht unter einem transistor den BJT. Das sieht man auch im...

Subsessor 12. Sep 2014

Danke, das hat mir den Tag gerettet. :D



Anzeige

Stellenmarkt
  1. ESG Elektroniksystem- und Logistik-GmbH, Wolfsburg
  2. PSI AG, Aschaffenburg
  3. diva-e Digital Value Enterprise GmbH, München
  4. Rohde & Schwarz Cybersecurity GmbH, Hamburg


Anzeige
Top-Angebote
  1. 429,00€ bei Alternate.de
  2. 89,90€ statt 129,90€ bei Alternate.de
  3. und mit Gutscheincode bis zu 40€ Rabatt erhalten bei Alternate.de

Folgen Sie uns
       


  1. Smartphone-Tastatur

    Nuance stellt Swype ein

  2. Homebrew

    Bastler veröffentlichen alternativen Launcher für Switch

  3. Telekom

    15 Millionen Haushalte sollen 2018 Super Vectoring erhalten

  4. Windows Phone 7.5 und 8.0

    Microsoft schaltet Smartphone-Funktionen ab

  5. Raja Koduri

    Intel zeigt Prototyp von dediziertem Grafikchip

  6. Vizzion

    VW zeigt selbstfahrendes Auto ohne Lenkrad

  7. iOS, MacOS und WatchOS

    Apple verteilt Updates wegen Telugu-Bug

  8. Sicherheitslücken

    Mehr als 30 Klagen gegen Intel wegen Meltdown und Spectre

  9. Nightdive Studios

    Arbeit an System Shock Remake bis auf Weiteres eingestellt

  10. FTTH

    Landkreistag fordert mit Vodafone Glasfaser bis in Gebäude



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
Fe im Test: Fuchs im Farbenrausch
Fe im Test
Fuchs im Farbenrausch
  1. Mobile-Games-Auslese GladOS aus Portal und sowas wie Dark Souls für unterwegs
  2. Monster Hunter World im Test Das Viecher-Fleisch ist jetzt gut durch
  3. Indiegames-Rundschau Krawall mit Knetmännchen und ein Mann im Fass

Materialforschung: Stanen - ein neues Wundermaterial?
Materialforschung
Stanen - ein neues Wundermaterial?
  1. Colorfab 3D-gedruckte Objekte erhalten neue Farbgestaltung
  2. Umwelt China baut 100-Meter-Turm für die Luftreinigung
  3. Crayfis Smartphones sollen kosmische Strahlung erfassen

Samsung C27HG70 im Test: Der 144-Hz-HDR-Quantum-Dot-Monitor
Samsung C27HG70 im Test
Der 144-Hz-HDR-Quantum-Dot-Monitor
  1. Volumendisplay US-Forscher lassen Projektion schweben wie in Star Wars
  2. Sieben Touchscreens Nissan Xmotion verwendet Koi als virtuellen Assistenten
  3. CJ791 Samsung stellt gekrümmten Thunderbolt-3-Monitor vor

  1. Erfahrungen nach der ersten Nacht...

    Lemo | 10:44

  2. Re: Finde ich gut

    RipClaw | 10:44

  3. Re: Ach die haben einen Double Fine gemacht.

    mnementh | 10:44

  4. Re: Interessante Fragen bleiben unbeantwortet

    Genie | 10:43

  5. Re: Liebe Einbrecher

    solary | 10:42


  1. 10:40

  2. 10:23

  3. 10:04

  4. 08:51

  5. 06:37

  6. 06:27

  7. 00:27

  8. 18:27


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel