Abo
  • Services:
Anzeige
Schaltbild des Panels
Schaltbild des Panels (Bild: Christer Weinigel)

Die Macht der Statistik

Wie geht es weiter? Die Signale der niederwertigsten Bits in jeder Pin-Gruppe sollten sich öfter ändern als die höherwertigen. Warum also nicht eine kleine Statistik aufmachen? Ich sortiere die Signale an den Pins nach der Häufigkeit der Änderungen und ordne sie in Vierergruppen an.

Übergänge    Pins
6            E13 F12 J14 K15
18           F10 H13 H15 L14
42           D11 G12 G14 M15
84           C11 F15 J13 N14
173          P15 B14 E15 J11
335 - 357    K12 B15 M13 D14
358 - 368    B10 R15 T14 C13
406 - 427    L12 R14 C15 B12

Bei einer Sinuskurve, die sich dreimal wiederholt, wird sich das höchstwertige Bit zweimal pro Wiederholung ändern, damit gilt 2 * 3 = 6 Änderungen, das entspricht dem ersten Eintrag. Die anderen Einträge sind Vielfache von 3. Erst ab 173 wird das Schema durchbrochen, das liegt um eins unter 58 * 3 = 174. Wahrscheinlich ist das Signal nicht ganz mittig über den gesamten Bereich. Die Anzahl der Änderungen für die niederwertigsten drei Bits variiert deutlich, eventuell sind sie durcheinander und einige Signaländerungen sind wahrscheinlich einfach Rauschen.

Anzeige

Ordnen wir die Pins entsprechend der obigen Tabelle und schauen erneut darauf:

  • Legende der FPGA-Pins (Bild: Christer Weinigel)
  • Die FPGA-Pins (Bild: Christer Weinigel)
  • Pins des SoC-Bus (Bild: Christer Weinigel)
  • Pins zum RAM (Bild: Christer Weinigel)
  • Pins zum ADC (Bild: Christer Weinigel)
  • Vollständig dokumentierte Karte der Pins (Bild: Christer Weinigel)
  • Matrix-Schaltung der Bedientasten am Oszilloskop (Bild: Christer Weinigel)
  • Noch keine Sinuskurve (Bild: Christer Weinigel)
  • Mit viel Phantasie eine Sinuskurve (Bild: Christer Weinigel)
  • Eine echte Sinuskurve (Bild: Christer Weinigel)
  • Das gleiche Spiel mit zwei Kanälen (Bild: Christer Weinigel)
  • Noch etwas Chaos (Bild: Christer Weinigel)
  • Wenigstens keine Ausreißer mehr (Bild: Christer Weinigel)
  • Beide Kanäle sind klar erkennbar. (Bild: Christer Weinigel)
  • Beide Kanäle mit größer Dämpfung (Bild: Christer Weinigel)
Eine echte Sinuskurve (Bild: Christer Weinigel)

Das sieht jetzt definitiv wie eine abgeschnittene Sinuskurve aus. Es gibt immer noch viel Rauschen, aber langsam wird es.

Weiter geht es. Da alle Pin-Gruppen ähnliche Daten zeigen, muss der ADC mit allen vier Gruppen Daten von Kanal 1 liefern. Also starte ich das Oszilloskop neu und schalte beide Kanäle an, beide werden mit der gleichen Signalquelle gespeist. Jetzt sollten je zwei Gruppen die Daten für Kanal 1 und Kanal 2 enthalten. Ich schalte auf Linux um und führe eine neue Erfassung durch.

  • Legende der FPGA-Pins (Bild: Christer Weinigel)
  • Die FPGA-Pins (Bild: Christer Weinigel)
  • Pins des SoC-Bus (Bild: Christer Weinigel)
  • Pins zum RAM (Bild: Christer Weinigel)
  • Pins zum ADC (Bild: Christer Weinigel)
  • Vollständig dokumentierte Karte der Pins (Bild: Christer Weinigel)
  • Matrix-Schaltung der Bedientasten am Oszilloskop (Bild: Christer Weinigel)
  • Noch keine Sinuskurve (Bild: Christer Weinigel)
  • Mit viel Phantasie eine Sinuskurve (Bild: Christer Weinigel)
  • Eine echte Sinuskurve (Bild: Christer Weinigel)
  • Das gleiche Spiel mit zwei Kanälen (Bild: Christer Weinigel)
  • Noch etwas Chaos (Bild: Christer Weinigel)
  • Wenigstens keine Ausreißer mehr (Bild: Christer Weinigel)
  • Beide Kanäle sind klar erkennbar. (Bild: Christer Weinigel)
  • Beide Kanäle mit größer Dämpfung (Bild: Christer Weinigel)
Das gleiche Spiel mit zwei Kanälen (Bild: Christer Weinigel)

Die Pins für beide Kanäle wirken teilweise vermischt, also probiere ich wieder den Trick mit dem abgeschnittenen Signal und vertausche die Pins so lange, bis die ersten beiden Gruppen die Daten von Kanal 1 enthalten.

  • Legende der FPGA-Pins (Bild: Christer Weinigel)
  • Die FPGA-Pins (Bild: Christer Weinigel)
  • Pins des SoC-Bus (Bild: Christer Weinigel)
  • Pins zum RAM (Bild: Christer Weinigel)
  • Pins zum ADC (Bild: Christer Weinigel)
  • Vollständig dokumentierte Karte der Pins (Bild: Christer Weinigel)
  • Matrix-Schaltung der Bedientasten am Oszilloskop (Bild: Christer Weinigel)
  • Noch keine Sinuskurve (Bild: Christer Weinigel)
  • Mit viel Phantasie eine Sinuskurve (Bild: Christer Weinigel)
  • Eine echte Sinuskurve (Bild: Christer Weinigel)
  • Das gleiche Spiel mit zwei Kanälen (Bild: Christer Weinigel)
  • Noch etwas Chaos (Bild: Christer Weinigel)
  • Wenigstens keine Ausreißer mehr (Bild: Christer Weinigel)
  • Beide Kanäle sind klar erkennbar. (Bild: Christer Weinigel)
  • Beide Kanäle mit größer Dämpfung (Bild: Christer Weinigel)
Noch etwas Chaos (Bild: Christer Weinigel)

Das sieht wieder besser aus. Die rote und die grüne Gruppe enthalten die Daten von Kanal 1, die blaue und magentafarbene Gruppe die von Kanal 2. Offensichtlich sind die grüne und blaue Gruppe immer noch vermischt. Zwischen der 80. und der 230. Stichprobe ist der Wert der blauen Stichproben um 128 zu hoch und der der grünen 128 zu niedrig. Ich tausche die Pins, die den Wert 128 repräsentierten, zwischen den Gruppen aus.

  • Legende der FPGA-Pins (Bild: Christer Weinigel)
  • Die FPGA-Pins (Bild: Christer Weinigel)
  • Pins des SoC-Bus (Bild: Christer Weinigel)
  • Pins zum RAM (Bild: Christer Weinigel)
  • Pins zum ADC (Bild: Christer Weinigel)
  • Vollständig dokumentierte Karte der Pins (Bild: Christer Weinigel)
  • Matrix-Schaltung der Bedientasten am Oszilloskop (Bild: Christer Weinigel)
  • Noch keine Sinuskurve (Bild: Christer Weinigel)
  • Mit viel Phantasie eine Sinuskurve (Bild: Christer Weinigel)
  • Eine echte Sinuskurve (Bild: Christer Weinigel)
  • Das gleiche Spiel mit zwei Kanälen (Bild: Christer Weinigel)
  • Noch etwas Chaos (Bild: Christer Weinigel)
  • Wenigstens keine Ausreißer mehr (Bild: Christer Weinigel)
  • Beide Kanäle sind klar erkennbar. (Bild: Christer Weinigel)
  • Beide Kanäle mit größer Dämpfung (Bild: Christer Weinigel)
Wenigstens keine Ausreißer mehr (Bild: Christer Weinigel)

Langsam sieht es gut aus. Es gibt noch einige Artefakte bei den drei niederwertigsten Bits, aber das ist nicht so schlimm. Ich spiele einfach ein wenig weiter herum, bis der Graph gut aussieht. Schließlich ergibt sich der finale Graph:

  • Legende der FPGA-Pins (Bild: Christer Weinigel)
  • Die FPGA-Pins (Bild: Christer Weinigel)
  • Pins des SoC-Bus (Bild: Christer Weinigel)
  • Pins zum RAM (Bild: Christer Weinigel)
  • Pins zum ADC (Bild: Christer Weinigel)
  • Vollständig dokumentierte Karte der Pins (Bild: Christer Weinigel)
  • Matrix-Schaltung der Bedientasten am Oszilloskop (Bild: Christer Weinigel)
  • Noch keine Sinuskurve (Bild: Christer Weinigel)
  • Mit viel Phantasie eine Sinuskurve (Bild: Christer Weinigel)
  • Eine echte Sinuskurve (Bild: Christer Weinigel)
  • Das gleiche Spiel mit zwei Kanälen (Bild: Christer Weinigel)
  • Noch etwas Chaos (Bild: Christer Weinigel)
  • Wenigstens keine Ausreißer mehr (Bild: Christer Weinigel)
  • Beide Kanäle sind klar erkennbar. (Bild: Christer Weinigel)
  • Beide Kanäle mit größer Dämpfung (Bild: Christer Weinigel)
Beide Kanäle sind klar erkennbar. (Bild: Christer Weinigel)

Wenn ich die Dämpfung erhöhe, verändert sich der Graph entsprechend.

  • Legende der FPGA-Pins (Bild: Christer Weinigel)
  • Die FPGA-Pins (Bild: Christer Weinigel)
  • Pins des SoC-Bus (Bild: Christer Weinigel)
  • Pins zum RAM (Bild: Christer Weinigel)
  • Pins zum ADC (Bild: Christer Weinigel)
  • Vollständig dokumentierte Karte der Pins (Bild: Christer Weinigel)
  • Matrix-Schaltung der Bedientasten am Oszilloskop (Bild: Christer Weinigel)
  • Noch keine Sinuskurve (Bild: Christer Weinigel)
  • Mit viel Phantasie eine Sinuskurve (Bild: Christer Weinigel)
  • Eine echte Sinuskurve (Bild: Christer Weinigel)
  • Das gleiche Spiel mit zwei Kanälen (Bild: Christer Weinigel)
  • Noch etwas Chaos (Bild: Christer Weinigel)
  • Wenigstens keine Ausreißer mehr (Bild: Christer Weinigel)
  • Beide Kanäle sind klar erkennbar. (Bild: Christer Weinigel)
  • Beide Kanäle mit größer Dämpfung (Bild: Christer Weinigel)
Beide Kanäle mit größer Dämpfung (Bild: Christer Weinigel)

Ich habe es geschafft. Es kann sein, dass die Ordnung der Gruppen noch nicht ganz korrekt ist. Die 1. Gruppe von Kanal 1 könnte tatsächlich auch die 2. Gruppe von Kanal 1 sein. Ich müsste mit höheren Signalfrequenzen experimentieren, um herauszufinden, ob die Abfolge stimmt oder nicht.

Aber mein Ziel habe ich erreicht. Ich kann das Oszilloskop mit meiner eigenen Software nutzen, um Signale zu analysieren.

Weiterlesen lohnt

Wir haben eine Vielzahl von Werkzeugen, Methoden und teils unorthodoxen Ideen kennengelernt, um die Hard- und Software eines Gerätes zu verstehen. Die Analyse von Christer Weinigel ist allerdings noch längst nicht vorbei. In weiteren Blogbeiträgen widmet er sich unter anderem dem genaueren Verständnis des Analog-Frontends und seiner Ansteuerung, greift erneut die DDR-RAM-Implementierung im FPGA auf - diesmal mit Erfolg. Mit der Kenntnis der gesamten Artikelserie sollte es auch für Einsteiger möglich sein, den umfangreichen Ausführungen zu folgen.

Diese Artikelserie erschien zuerst im Blog von Christer Weinigel. Mit seiner Erlaubnis hat Golem.de seine Artikel ins Deutsche übersetzt und dabei einige Kürzungen und Ergänzungen vorgenommen, damit der Inhalt auch Einsteigern verständlich ist.

 Oszilloskop-Daten auslesen

eye home zur Startseite
grslbr 26. Nov 2016

Du bist mit Abstand der coolste Typ auf dieser Erde. Wahrscheinlich wirst du eigentlich...

grslbr 26. Nov 2016

Jo, das Trollen bei Heise war schon mal lustiger. Früher konnte man da sicher sein, mit...



Anzeige

Stellenmarkt
  1. Präsidium Technik, Logistik, Service der Polizei, Stuttgart
  2. PTV Group, Karlsruhe
  3. Robert Bosch GmbH, Leonberg
  4. Detecon International GmbH, Dresden


Anzeige
Hardware-Angebote
  1. 444,00€ + 4,99€ Versand
  2. täglich neue Deals
  3. auf Kameras und Objektive

Folgen Sie uns
       


  1. Heiko Maas

    "Kein Wunder, dass Facebook seine Vorgaben geheim hält"

  2. Virtual Reality

    Oculus Rift unterstützt offiziell Roomscale-VR

  3. FTP-Client

    Filezilla bekommt ein Master Password

  4. Künstliche Intelligenz

    Apple arbeitet offenbar an eigenem AI-Prozessor

  5. Die Woche im Video

    Verbogen, abgehoben und tiefergelegt

  6. ZTE

    Chinas großes 5G-Testprojekt läuft weiter

  7. Ubisoft

    Far Cry 5 bietet Kampf gegen Sekte in und über Montana

  8. Rockstar Games

    Waffenschiebereien in GTA 5

  9. Browser-Games

    Unreal Engine 4.16 unterstützt Wasm und WebGL 2.0

  10. Hasskommentare

    Bundesrat fordert zahlreiche Änderungen an Maas-Gesetz



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
Asus B9440 im Test: Leichtes Geschäftsnotebook liefert zu wenig Business
Asus B9440 im Test
Leichtes Geschäftsnotebook liefert zu wenig Business
  1. ROG-Event in Berlin Asus zeigt gekrümmtes 165-Hz-Quantum-Dot-Display und mehr

Elektromobilität: Wie kommt der Strom in die Tiefgarage?
Elektromobilität
Wie kommt der Strom in die Tiefgarage?
  1. Elektroauto Tesla gewährt rückwirkend Supercharger-Gratisnutzung
  2. Elektroautos Merkel hofft auf Bau von Batteriezellen in Deutschland
  3. Strategische Entscheidung Volvo setzt voll auf Elektro und trennt sich vom Diesel

In eigener Sache: Die Quanten kommen!
In eigener Sache
Die Quanten kommen!
  1. id Software "Global Illumination ist derzeit die größte Herausforderung"
  2. In eigener Sache Golem.de führt kostenpflichtige Links ein
  3. In eigener Sache Golem.de sucht Marketing Manager (w/m)

  1. Ausgerechnet Heiko Maas predigt Transparenz

    elgooG | 17:49

  2. Re: Diese ganzen Online DLCs nerven langsam!

    Proctrap | 17:48

  3. Re: Siri und diktieren

    andi_lala | 17:41

  4. Nachtrag nicht 100% richtig

    U.S.tooth | 17:38

  5. Re: Forken

    sniner | 17:34


  1. 12:54

  2. 12:41

  3. 11:44

  4. 11:10

  5. 09:01

  6. 17:40

  7. 16:40

  8. 16:29


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel