Abo
  • Services:
Anzeige
Nicolas Wöhrl züchtet Diamanten, in denen Quantencomputer untergebracht werden können.
Nicolas Wöhrl züchtet Diamanten, in denen Quantencomputer untergebracht werden können. (Bild: Fabian Hamacher/Golem.de)

Quantencomputer: Schlüssel knacken mit Quanten-Diamanten

Nicolas Wöhrl züchtet Diamanten, in denen Quantencomputer untergebracht werden können.
Nicolas Wöhrl züchtet Diamanten, in denen Quantencomputer untergebracht werden können. (Bild: Fabian Hamacher/Golem.de)

Quantencomputer sind noch sehr weit davon entfernt, gängige kryptographische Schlüssel zu knacken. Es könnte aber bald so weit sein, sagte der Physiker Nicolas Wöhrl. Er will Quantencomputer in selbst gezüchteten Diamanten unterbringen.

Nicolas Wöhrl von der Universität Duisburg-Essen züchtet Diamanten. Darin sollen die Quantenbits oder Qubits eines Quantencomputers untergebracht werden. Diamanten seien für die Forschung im Bereich Quantencomputer ein vielversprechendes Material, sagt er. Denn die darin angeordneten Kohlenstoffatome seien so stabil, dass sie die Qubits kaum stören und somit die Dekohärenz der Quantensysteme möglichst gering halten.

Anzeige

Bisher konnten diese Quantensysteme nur auf supraleitendem Material oder im Vakuum beim absoluten Gefrierpunkt so stabil gehalten werden, dass sie für Berechnungen genutzt werden konnten. Damit machten Quantencomputer zwar einen großen Schritt in Richtung Gebrauchstauglichkeit, bis es so weit sei, dauere es aber noch mehrere Jahre, sagt Wöhrl.

Quantensysteme in Unreinheiten

Im August 2013 konnten Forscher an der Humboldt-Universität Berlin ein Quantensystem in Unreinheiten eines Diamanten erzeugen. Sie beschossen dazu den Diamanten mit Stickstoffatomen aus Ionenkanonen, die dann die Kohlenstoffatome ersetzten. Dabei wurden Kohlenstoffatome mit einem Stickstoffatom und zwei benachbarten leeren Stellen ersetzt - sogenannte Quantenpunkte.

Kurz darauf gelang es Forschern am 3. Physikalischen Institut der Universität Stuttgart, ein Quantensystem aus drei Qubits in einem Diamanten zu erzeugen und weitgehend unter Kontrolle zu bringen. Dabei wurden drei Spins von Atomkernen mit einem Elektronenspin verschränkt. Zwei der Spins stammen von dem Stickstoffatom und dem danebenliegenden Elektron. Ein weiteres fanden die Forscher in einem benachbarten, aber seltenen C-13 Kohlenstoffatom und bildeten daraus das Quantenelement.

Stabile Umgebung für Qubits

Die umgebenen Kohlenstoffatome sorgen dafür, dass die Qubits möglichst ungestört und so weitgehend stabil gehalten werden. Denn anders als Transistoren streben Quantensysteme immer einen Ruhezustand an und müssen wiederholt aufgefrischt werden. In Stuttgart entwickelten die Forscher ein entsprechendes Fehlerkorrektursystem, das diese Dekohärenz des Quantensystems ausgleicht.

Das Quantensystem in den Diamanten wird dann mit Mikrowellen beschossen, um die Spins der Elektronen zu verändern. Mit einem rot fluoreszierenden Laser konnten dann die beiden möglichen Zustände der Spins bestimmen.

Materialien für Quantencomputer 

eye home zur Startseite
Randalmaker 11. Mai 2014

Also ich bin kein Experte, aber das Grundprinzip ist gar nicht so schwer, glaube ich...

hannob (golem.de) 09. Mai 2014

Lies den Artikel nochmal. Da steht: "Sollten sie aber einmal funktionieren, sind...

Kondom 09. Mai 2014

Und was denkst du warum ich "Mehr lässt das System bei derzeitiger Genauigkeit nicht zu...

sofias 08. Mai 2014

http://en.wikipedia.org/wiki/Quantum_key_distribution#Commercial es gibt auch schon e'ein...

CiC 08. Mai 2014

Selbst bei asymmetrischer Verschlüsselung gibt es eine Reihe an Kandidaten von denen...



Anzeige

Stellenmarkt
  1. text2net GmbH, Bonn
  2. Allplan GmbH, München
  3. mps public solutions gmbh, Koblenz, Oberessendorf bei Biberach oder Bissendorf bei Osnabrück
  4. Robert Bosch GmbH, Abstatt


Anzeige
Spiele-Angebote
  1. 27,99€
  2. 29,99€
  3. ab 129,99€

Folgen Sie uns
       


  1. Messenger-Dienste

    Bundestag erlaubt großflächigen Einsatz von Staatstrojanern

  2. Zahlungsabwickler

    Start-Up Stripe kommt nach Deutschland

  3. Kaspersky

    Microsoft reagiert auf Antivirus-Kartellbeschwerde

  4. EA Sports

    NHL 18 soll Hockey der jungen Spielergeneration bieten

  5. Eviation

    Alice fliegt elektrisch

  6. Staatstrojaner

    Dein trojanischer Freund und Helfer

  7. OVG NRW

    Gericht stoppt Vorratsdatenspeicherung

  8. Amazon Echo

    Erinnerungsfunktion noch nicht für alle Alexa-Geräte

  9. PowerVR

    Imagination Technologies steht zum Verkauf

  10. Internet der Dinge

    Samsungs T200 ist erster Exynos für IoT



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
Sony Xperia XZ Premium im Test: Taschenspiegel mit übertrieben gutem Display
Sony Xperia XZ Premium im Test
Taschenspiegel mit übertrieben gutem Display
  1. Keine Entschädigung Gericht sieht mobiles Internet nicht als lebenswichtig an
  2. LTE Deutsche Telekom führt HD Voice Plus ein
  3. Datenrate Vodafone bietet im LTE-Netz 500 MBit/s

1Sheeld für Arduino angetestet: Sensor-Platine hat keine Sensoren und liefert doch Daten
1Sheeld für Arduino angetestet
Sensor-Platine hat keine Sensoren und liefert doch Daten
  1. Calliope Mini im Test Neuland lernt programmieren
  2. Arduino Cinque RISC-V-Prozessor und ESP32 auf einem Board vereint
  3. MKRFOX1200 Neues Arduino-Board erscheint mit kostenlosem Datentarif

Mesh- und Bridge-Systeme in der Praxis: Mehr Access Points, mehr Spaß
Mesh- und Bridge-Systeme in der Praxis
Mehr Access Points, mehr Spaß
  1. Eero 2.0 Neues Mesh-WLAN-System kann sich auch per Kabel vernetzen
  2. BVG Fast alle Berliner U-Bahnhöfe haben offenes WLAN
  3. Broadcom-Sicherheitslücke Vom WLAN-Chip das Smartphone übernehmen

  1. Re: Ist doch ganz einfach ...

    narea | 22:31

  2. Re: Die Lösung des Problems:

    narea | 22:29

  3. Re: Hilfe bei Windows 10 Home - Benutzer anlegen

    Phantom | 22:26

  4. Re: Stromverbrauch?

    johnripper | 22:26

  5. Re: Im Vergleich zum S8...

    schipplock | 22:20


  1. 19:16

  2. 18:35

  3. 18:01

  4. 15:51

  5. 15:35

  6. 15:00

  7. 14:28

  8. 13:40


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel