Abo
  • Services:
Anzeige
Nicolas Wöhrl züchtet Diamanten, in denen Quantencomputer untergebracht werden können.
Nicolas Wöhrl züchtet Diamanten, in denen Quantencomputer untergebracht werden können. (Bild: Fabian Hamacher/Golem.de)

Quantencomputer: Schlüssel knacken mit Quanten-Diamanten

Nicolas Wöhrl züchtet Diamanten, in denen Quantencomputer untergebracht werden können.
Nicolas Wöhrl züchtet Diamanten, in denen Quantencomputer untergebracht werden können. (Bild: Fabian Hamacher/Golem.de)

Quantencomputer sind noch sehr weit davon entfernt, gängige kryptographische Schlüssel zu knacken. Es könnte aber bald so weit sein, sagte der Physiker Nicolas Wöhrl. Er will Quantencomputer in selbst gezüchteten Diamanten unterbringen.

Nicolas Wöhrl von der Universität Duisburg-Essen züchtet Diamanten. Darin sollen die Quantenbits oder Qubits eines Quantencomputers untergebracht werden. Diamanten seien für die Forschung im Bereich Quantencomputer ein vielversprechendes Material, sagt er. Denn die darin angeordneten Kohlenstoffatome seien so stabil, dass sie die Qubits kaum stören und somit die Dekohärenz der Quantensysteme möglichst gering halten.

Anzeige

Bisher konnten diese Quantensysteme nur auf supraleitendem Material oder im Vakuum beim absoluten Gefrierpunkt so stabil gehalten werden, dass sie für Berechnungen genutzt werden konnten. Damit machten Quantencomputer zwar einen großen Schritt in Richtung Gebrauchstauglichkeit, bis es so weit sei, dauere es aber noch mehrere Jahre, sagt Wöhrl.

Quantensysteme in Unreinheiten

Im August 2013 konnten Forscher an der Humboldt-Universität Berlin ein Quantensystem in Unreinheiten eines Diamanten erzeugen. Sie beschossen dazu den Diamanten mit Stickstoffatomen aus Ionenkanonen, die dann die Kohlenstoffatome ersetzten. Dabei wurden Kohlenstoffatome mit einem Stickstoffatom und zwei benachbarten leeren Stellen ersetzt - sogenannte Quantenpunkte.

Kurz darauf gelang es Forschern am 3. Physikalischen Institut der Universität Stuttgart, ein Quantensystem aus drei Qubits in einem Diamanten zu erzeugen und weitgehend unter Kontrolle zu bringen. Dabei wurden drei Spins von Atomkernen mit einem Elektronenspin verschränkt. Zwei der Spins stammen von dem Stickstoffatom und dem danebenliegenden Elektron. Ein weiteres fanden die Forscher in einem benachbarten, aber seltenen C-13 Kohlenstoffatom und bildeten daraus das Quantenelement.

Stabile Umgebung für Qubits

Die umgebenen Kohlenstoffatome sorgen dafür, dass die Qubits möglichst ungestört und so weitgehend stabil gehalten werden. Denn anders als Transistoren streben Quantensysteme immer einen Ruhezustand an und müssen wiederholt aufgefrischt werden. In Stuttgart entwickelten die Forscher ein entsprechendes Fehlerkorrektursystem, das diese Dekohärenz des Quantensystems ausgleicht.

Das Quantensystem in den Diamanten wird dann mit Mikrowellen beschossen, um die Spins der Elektronen zu verändern. Mit einem rot fluoreszierenden Laser konnten dann die beiden möglichen Zustände der Spins bestimmen.

Materialien für Quantencomputer 

eye home zur Startseite
Randalmaker 11. Mai 2014

Also ich bin kein Experte, aber das Grundprinzip ist gar nicht so schwer, glaube ich...

hannob (golem.de) 09. Mai 2014

Lies den Artikel nochmal. Da steht: "Sollten sie aber einmal funktionieren, sind...

Kondom 09. Mai 2014

Und was denkst du warum ich "Mehr lässt das System bei derzeitiger Genauigkeit nicht zu...

sofias 08. Mai 2014

http://en.wikipedia.org/wiki/Quantum_key_distribution#Commercial es gibt auch schon e'ein...

CiC 08. Mai 2014

Selbst bei asymmetrischer Verschlüsselung gibt es eine Reihe an Kandidaten von denen...



Anzeige

Stellenmarkt
  1. Robert Bosch GmbH, Böblingen
  2. Senacor Technologies AG, verschiedene Standorte
  3. Provadis Partner für Bildung & Beratung GmbH, Frankfurt am Main
  4. Berliner Stadtreinigungsbetriebe (BSR), Berlin


Anzeige
Blu-ray-Angebote
  1. 12,99€
  2. (u. a. Hobbit Trilogie Blu-ray 43,89€ und Batman Dark Knight Trilogy Blu-ray 17,99€)
  3. (u. a. Game of Thrones, Big Bang Theory, The Vampire Diaries, Supernatural)

Folgen Sie uns
       


  1. Blizzard

    Update und Turnier für Warcraft 3 angekündigt

  2. EU-Urheberrechtsreform

    Kompromissvorschlag hält an Uploadfiltern fest

  3. Desktop-Modi im Vergleich

    Fast ein PC für die Hosentasche

  4. Android 8.0

    Samsung verteilt Oreo-Upgrade wieder für Galaxy S8

  5. Bilanzpressekonferenz

    Telekom bestätigt Super-Vectoring für dieses Jahr

  6. Honorbuddy

    Bossland muss keine Millionen an Blizzard zahlen

  7. Soziale Netzwerke

    Twitter sperrt Tausende verdächtige Accounts

  8. Qualcomm

    802.11ax-WLAN kann bald in Smartphones kommen

  9. Synthesizer IIIp

    Moog legt Synthie-Klassiker für 35.000 US-Dollar wieder auf

  10. My Playstation

    Sony überarbeitet sein soziales PS-Ökosystem



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
Star Trek Discovery: Die verflixte 13. Folge
Star Trek Discovery
Die verflixte 13. Folge
  1. Star Trek Bridge Crew Sternenflotte verlässt Holodeck

Materialforschung: Stanen - ein neues Wundermaterial?
Materialforschung
Stanen - ein neues Wundermaterial?
  1. Colorfab 3D-gedruckte Objekte erhalten neue Farbgestaltung
  2. Umwelt China baut 100-Meter-Turm für die Luftreinigung
  3. Crayfis Smartphones sollen kosmische Strahlung erfassen

Samsung C27HG70 im Test: Der 144-Hz-HDR-Quantum-Dot-Monitor
Samsung C27HG70 im Test
Der 144-Hz-HDR-Quantum-Dot-Monitor
  1. Volumendisplay US-Forscher lassen Projektion schweben wie in Star Wars
  2. Sieben Touchscreens Nissan Xmotion verwendet Koi als virtuellen Assistenten
  3. CJ791 Samsung stellt gekrümmten Thunderbolt-3-Monitor vor

  1. Re: Es gibt keine Drosselung auf 1Mbit/s

    qq1 | 14:04

  2. Re: Netzabdeckung Norwegen

    schily | 14:04

  3. Re: Meine Ansicht zu dem Ganzen:

    Muhaha | 14:02

  4. Re: Battery life

    Test_The_Rest | 14:01

  5. Re: bissel überteuert

    _bla_ | 14:01


  1. 13:12

  2. 12:40

  3. 12:07

  4. 12:05

  5. 12:01

  6. 11:50

  7. 11:44

  8. 11:29


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel