Abo
  • Services:

Quantencomputer: Quantenrechnen mit Diamanten

Fehlstellen im Kristallgitter von Diamanten wären hervorragende Kandidaten für Quantencomputer. Forscher zeigen, wie sich diese besser platzieren lassen.

Artikel veröffentlicht am , Matthias Matting
Fehlstellen im Diamanten unter dem Laser-Scan-Mikroskop
Fehlstellen im Diamanten unter dem Laser-Scan-Mikroskop (Bild: F.J. Heremans und D. Awschalom/U. Chicago und K. Ohno/UCSB)

Diamanten sind auch der Physiker beste Freunde. Nicht wegen ihres schönen Äußeren allerdings, sondern ob ihrer inneren Werte. Nicht die perfekte Gestalt des Kohlenstoff-Kristalls ist für sie spannend, sondern kleinste Abweichungen davon. Ab und zu kommt es nämlich vor, dass sich im Kristallgitter des Diamanten an der Stelle eines Kohlenstoffatoms ein Stickstoffatom befindet. Der Nachbarplatz hingegen ist unbesetzt. In der Fachsprache heißt ein solcher Defekt Nitrogen-Vacancy-Fehlstelle (NV-Defekt) oder auch Stickstoff-Fehlstellen-Zentrum.

  • Schema des Prozesses, der die Fehlstellen im Material erzeugt (Bild: F.J. Heremans und D. Awschalom/U. Chicago und K. Ohno/UCSB)
  • Die Fehlstellen im Diamanten unter dem Laser-Scan-Mikroskop (großes Bild) beziehungsweise unter dem Rasterelektronenmikroskop (Bild: F.J. Heremans und D. Awschalom/U. Chicago und K. Ohno/UCSB)
Schema des Prozesses, der die Fehlstellen im Material erzeugt (Bild: F.J. Heremans und D. Awschalom/U. Chicago und K. Ohno/UCSB)
Stellenmarkt
  1. SCHOTT AG, Mainz
  2. TGW Software Services GmbH, Regensburg, Teunz

Seinen besonderen Charme bekommt der NV-Defekt dadurch, dass der Platz des fehlenden Kohlenstoffatoms nicht wirklich leer ist. Stattdessen darf man sich dort ein Elektron vorstellen, das nicht wie die anderen Elektronen der Kohlenstoffatome paarweise (kovalent) gebunden ist. Tatsächlich schwebt das Elektron nicht ruhig an diesem Ort, das verhindert schon die Quantenphysik. Aber da sich Elektronen anders als bei einem Metall auch nicht frei durch das Gitter bewegen können, ist die Vorstellung, genau dort ein freies Elektron zu finden, auch nicht so falsch.

Einzelphotonen-Quelle

Zumindest passt sie zu der Art und Weise, wie Physiker daraus Nutzen schöpfen können. Zum einen ist das Elektronen-Single als Einzelphotonen-Quelle geeignet, wie man sie zur Quanten-Kommunikation braucht. Es ist gar nicht so einfach, mit Sicherheit einzelne Lichtteilchen zu gewinnen. Regt man etwa einen Stoff thermisch an (Prinzip der Glühlampe), können gleichzeitig auch mehrere Photonen austreten. Der NV-Defekt hingegen besitzt so wenige Energieniveaus, dass das Elektron nach dem Aussenden eines Photons erst eine neue Anregung braucht, um ein weiteres Photon aussenden zu können.

Das freie Elektron lässt sich noch auf eine zweite Weise nutzen: für das Quantencomputing. Während man für andere Technologien tiefe Temperaturen (supraleitende Qubits) oder ein Vakuum braucht (Einzelatom-Qubits), liegen die Stickstoff-Fehlstellen bei Zimmertemperatur vor. Als Quantenbit lässt sich dabei der Spin des einzelnen Elektrons verwenden. Der Spin ist für lange Zeit stabil, die Fehlstelle selbst ist winzig klein und ließe sich gut integrieren, eine spezielle Kühlung würde unnötig.

NV-Defekte platzieren

Damit eine derartige Anwendung realistisch wird, müssen sich NV-Defekte allerdings zielgenau platzieren lassen. Das leisten bisherige Verfahren wie die Ionenimplantation nicht in ausreichendem Umfang. In den Applied Physics Letters beschreiben US-Forscher nun eine neue Methode. Während bei der Ionenimplantation durch den Beschuss mit Stickstoff-Atomen gleichzeitig auch die Fehlstellen eingebaut wurden, trennen die Forscher den Vorgang.

Zunächst ließen sie eine extrem dünne, mit Stickstoff versetzte Kristallschicht wachsen. Diese bombardierten sie anschließend über eine Maske mit 12C-Ionen, die die Leerstellen im Gitter erzeugten. In der Kombination aus dünner Schicht (z-Achse) und genauer Maskenpositionierung (x- und y-Achse) gelingt somit eine auf 180 Nanometer zielgenaue Platzierung der NV-Defekte. Dabei blieb der Spin der so erzeugten Einzelelektronen über mehr als 300 Mikrosekunden für die Anwendung im Quantencomputing stabil genug.



Anzeige
Spiele-Angebote
  1. 2,99€
  2. (-5%) 23,79€
  3. 43,99€
  4. 31,49€

Folgen Sie uns
       


Forza Horizon 4 - Golem.de Live (Teil 2)

In Teil 2 unseres Livestreams erkunden wir die offene Welt und tunen einen Audio RS 4.

Forza Horizon 4 - Golem.de Live (Teil 2) Video aufrufen
Athlon 200GE im Test: Celeron und Pentium abgehängt
Athlon 200GE im Test
Celeron und Pentium abgehängt

Mit dem Athlon 200GE belebt AMD den alten CPU-Markennamen wieder: Der Chip gefällt durch seine Zen-Kerne und die integrierte Vega-Grafikeinheit, die Intel-Konkurrenz hat dem derzeit preislich wenig entgegenzusetzen.
Ein Test von Marc Sauter

  1. AMD Threadripper erhalten dynamischen NUMA-Modus
  2. HP Elitedesk 705 Workstation Edition Minitower mit AMD-CPU startet bei 680 Euro
  3. Ryzen 5 2600H und Ryzen 7 2800H 45-Watt-CPUs mit Vega-Grafik für Laptops sind da

Neuer Kindle Paperwhite im Hands On: Amazons wasserdichter E-Book-Reader mit planem Display
Neuer Kindle Paperwhite im Hands On
Amazons wasserdichter E-Book-Reader mit planem Display

Amazon bringt einen neuen Kindle Paperwhite auf den Markt und verbessert viel. Der E-Book-Reader steckt in einem wasserdichten Gehäuse, hat eine plane Displayseite, mehr Speicher und wir können damit Audible-Hörbücher hören. Noch nie gab es so viel Kindle-Leistung für so wenig Geld.
Ein Hands on von Ingo Pakalski


    Neuer Echo Dot im Test: Amazon kann doch gute Mini-Lautsprecher bauen
    Neuer Echo Dot im Test
    Amazon kann doch gute Mini-Lautsprecher bauen

    Echo Dot steht bisher für muffigen, schlechten Klang. Mit dem neuen Modell zeigt Amazon, dass es doch gute smarte Mini-Lautsprecher mit dem Alexa-Sprachassistenten bauen kann, die sogar gegen die Konkurrenz von Google ankommen.
    Ein Test von Ingo Pakalski


        •  /