Warum ist der Bau von Quantencomputern so schwer?

In einem Quantencomputer müssen alle Registerbits aus physikalischen Teilchen bestehen, die sich kontrolliert in einem verschränkten Zustand befinden. Das Problem: Die Teilchen müssen dabei von anderen Teilchen aus der Umgebung isoliert werden. Der Zustand eines Quantencomputers ist also höchst instabil. Um Verschlüsselungsverfahren anzugreifen, müsste ein Quantencomputer Hunderte oder Tausende von Teilchen in verschränktem Zustand halten, da sich der gesamte Schlüssel im Speicher des Quantencomputers befinden muss. Dieser Vorgang lässt sich auch nicht parallelisieren. Zwei 512-Bit-Quantencomputer würden also nicht ausreichen, um einen 1.024-Bit-RSA-Schlüssel zu brechen. Man bräuchte hierfür einen 1.024-Bit-Quantencomputer.

Stellenmarkt
  1. IT (Senior-) Projektleiter (m/w/d) Finanzdienstleistungen
    Volkswagen Financial Services AG, Braunschweig
  2. Informatiker (w/m/d) mit Bachelor oder Fachhochschul-Diplom im Dezernat "IT-Betrieb" (Z3C)
    Bundeskartellamt, Bonn
Detailsuche

Da die Bitlänge eine entscheidende Hürde beim Bau von Quantencomputern ist, wäre eine erste Möglichkeit, sich vor Angriffen zu schützen, die Erhöhung der Schlüssellänge. Ein Bau eines 1.024-Bit-Quantencomputers erscheint unwahrscheinlich, ein 4.096-Bit-Quantencomputer ist aber mit Sicherheit noch deutlich schwieriger zu betreiben. Die Bedrohung durch Quantencomputer ist somit auch ein Argument gegen die Nutzung von Kryptographie auf Basis elliptischer Kurven und spricht für klassische Verfahren wie RSA. Denn bei der Kryptographie mit elliptischen Kurven kommen deutlich kürzere Schlüssel zum Einsatz. Während bei RSA und bei Verfahren auf Basis des diskreten Logarithmusproblems Schlüssellängen zwischen 1.024 und 4.096 Bit üblich sind, nutzen Verfahren auf Basis elliptischer Kurven üblicherweise Schlüssellängen im Bereich von 200 bis 500 Bit.

Wie weit ist die Forschung?

2001 gelang es Forschern von IBM, die Zahl 15 auf einem 7-Bit-Quantencomputer zu faktorisieren. Zehn Jahre später, 2011, gelang es einem Forscherteam der Universität Innsbruck, diesen Rekord zu brechen und 14 Quantenbits in einem kontrollierten Zustand zu halten.

Viele Wissenschaftler gehen davon aus, dass der Bau eines Quantencomputers in relevanter Größenordnung nahezu unmöglich ist. Das hält sie jedoch nicht davon ab, daran zu forschen. 2012 ging der Nobelpreis der Physik an die beiden Wissenschaftler David Wineland und Serge Haroche. Das Nobelpreiskomitee begründete seine Entscheidung damit, dass ihre Forschung dazu beitragen könne, in Zukunft Quantencomputer zu bauen.

Gibt es Public-Key-Verfahren, die vor Quantencomputern sicher sind?

Golem Karrierewelt
  1. Adobe Photoshop Aufbaukurs: virtueller Zwei-Tage-Workshop
    14./15.07.2022, Virtuell
  2. Adobe Photoshop Grundkurs: virtueller Drei-Tage-Workshop
    06.-08.07.2022, Virtuell
Weitere IT-Trainings

Vermutlich ja, aber die Forschung steht hier erst am Anfang. Es gibt einige experimentelle Public-Key-Algorithmen, bei denen Kryptographen annehmen, dass sie sich mit Quantencomputern nicht angreifen lassen. Ein möglicher Kandidat sind sogenannte gitterbasierte Verfahren, am weitesten entwickelt ist hier der Algorithmus NTRU, für den es bereits Implementierungen und Entwürfe für Standards gibt. NTRU ist allerdings patentiert und kommt somit etwa für den breiten Einsatz in Internetprotokollen vermutlich nicht infrage. Für sämtliche Algorithmen und ihre mathematischen Grundlagen gilt allerdings: Hier handelt es sich um frühe Forschung.

Für alle Public-Key-Verfahren gilt, dass sich ihre Sicherheit - zumindest mit heutigen mathematischen Methoden - nicht beweisen lässt. RSA, Diffie Hellman oder die Kryptographie mit elliptischen Kurven gelten nur deshalb als sicher, weil die Algorithmen über Jahrzehnte von den besten Kryptographen der Welt umfangreich untersucht wurden. Die Hoffnung: Gäbe es große Schwächen in den Verfahren, so hätte man diese bereits gefunden. Für die experimentellen Algorithmen, die möglicherweise Sicherheit vor Quantencomputern bieten, gilt dies nicht, denn sie wurden längst nicht so intensiv untersucht wie die bekannten Public-Key-Verfahren.

Generell gilt, dass die Entwicklung von Public-Key-Verfahren sehr schwierig ist. Nur wenige mathematische Probleme eignen sich, um daraus Public-Key-Verfahren zu konstruieren. Viele Verfahren, die in der Vergangenheit vorgeschlagen wurden, erwiesen sich bei näherer Betrachtung als unsicher. Ein Beispiel für ein solches Verfahren ist der Signaturalgorithmus SFLASH. Er galt als möglicher Kandidat für ein Verfahren, welches Sicherheit gegen Quantencomputer bietet. Doch nach einer Untersuchung durch ein Team des RSA-Erfinders Adi Shamir zeigte sich: SFLASH ist unsicher und lässt sich brechen - auch ganz ohne Quantencomputer.

Mit der Erforschung von Public-Key-Verfahren, die sich durch Quantencomputer nicht angreifen lassen, beschäftigt sich die Post-Quanten-Kryptographie. Seit 2008 finden in unregelmäßigen Abständen Fachkonferenzen statt, auf denen sich Kryptographen und Physiker über die neuesten Erkenntnisse austauschen. Im Oktober wird sich die Forschergemeinde das nächste Mal im kanadischen Waterloo treffen. Eine Herausforderung ist der notwendigerweise interdisziplinäre Ansatz. Kryptographen sind meist Mathematiker oder theoretische Informatiker und haben oft wenig Kenntnisse in der Quantenmechanik.

Bitte aktivieren Sie Javascript.
Oder nutzen Sie das Golem-pur-Angebot
und lesen Golem.de
  • ohne Werbung
  • mit ausgeschaltetem Javascript
  • mit RSS-Volltext-Feed
 Quantencomputer: Das Ende von RSA und Co.Quantenkryptographie, D-Wave und Fazit 
  1.  
  2. 1
  3. 2
  4. 3
  5.  


tibrob 14. Jan 2014

Selbst wenn Quantencomputer in den nächsten 20 Jahren "entwickelt" werden, bleibt es über...

tibrob 14. Jan 2014

Selbst wenn ... müssten deine Daten es wert sein, entschlüsselt zu werden, was bei 99...

PeterGriffing 08. Jan 2014

Ja, Bitcoin ist nicht 100% sicher und Quantencomputer könnten den Untergang des Bitcoin...

Julius Csar 08. Jan 2014

Es dürfte allgemein bekannt sein, dass Analogrechner bei Rechenaufgaben sehr viel...



Aktuell auf der Startseite von Golem.de
Wissenschaft
LHC hat drei neue exotische Teilchen entdeckt

Der sogenannte Teilchenzoo der Physik ist noch größer geworden. Die Wissenschaft hofft auf Bestätigung der Modelle zu deren internen Aufbau.

Wissenschaft: LHC hat drei neue exotische Teilchen entdeckt
Artikel
  1. Superior Continuous Torque: E-Motor von Mahle für Dauerbetrieb unter Stress
    Superior Continuous Torque
    E-Motor von Mahle für Dauerbetrieb unter Stress

    Mahle hat einen neuen Auto-Elektromotor entwickelt, der unbegrenzt lange unter hoher Last betrieben werden kann. Dies wird durch ein neues Kühlkonzept im Motor erreicht.

  2. Security: BSI beginnt Zertifizierung für 5G-Komponenten
    Security
    BSI beginnt Zertifizierung für 5G-Komponenten

    Eine schnelle und zuverlässige IT-Sicherheitsaussage für die geprüften Produkte, das verspricht das BSI. Doch welche Produkte sind betroffen?

  3. VW.OS: VW-Software soll einfach updatefähig und bezahlbar sein
    VW.OS
    VW-Software soll "einfach updatefähig" und bezahlbar sein

    Mit seiner Softwaresparte Cariad will VW ein einheitliches System mit vereinfachter Architektur erstellen.

Du willst dich mit Golem.de beruflich verändern oder weiterbilden?
Zum Stellenmarkt
Zur Akademie
Zum Coaching
  • Schnäppchen, Rabatte und Top-Angebote
    Die besten Deals des Tages
    Daily Deals • PS5 bestellbar • HP HyperX Gaming-Headset -40% • Corsair Wakü 234,90€ • Samsung Galaxy S20 128GB -36% • Audible -70% • MSI RTX 3080 12GB günstig wie nie: 948€ • AMD Ryzen 7 günstig wie nie: 259€ • Der beste 2.000€-Gaming-PC • CM 34" UWQHD 144 Hz günstig wie nie: 467,85€ [Werbung]
    •  /