Abo
  • Services:
Anzeige
Der Hexagon 680 steckt im Snapdragon 820
Der Hexagon 680 steckt im Snapdragon 820 (Bild: Qualcomm)

Qualcomm Hexagon 680: Smartphone-DSP soll Fotoqualität verbessern

Der Hexagon 680 steckt im Snapdragon 820
Der Hexagon 680 steckt im Snapdragon 820 (Bild: Qualcomm)

In einem Snapdragon-820-Chip steckt mehr als CPU-Kerne und eine Grafikeinheit: Der neue Hexagon-DSP erledigt die meisten Berechnungen, die auf einem Smartphone anfallen, wenn ein Foto oder Video aufgenommen wird. Das soll die Bildqualität steigern und die Akkulaufzeit verlängern.

Anzeige

Qualcomm hat auf der Technologietagung Hot Chips 27 neue Informationen zum Hexagon 680 bekanntgegeben. Dieser DSP (Digital Signal Prozessor) steckt im Snapdragon 820, Qualcomms nächstem System-on-a-Chip für Smartphones. Der Hexagon 680 besteht aus drei Bestandteilen, von denen zwei sich um die Foto- und Videobearbeitung sowie Sensoren für beispielsweise einen Schrittzähler kümmern, und einer das Modem mitbildet.

In einem Smartphone ist Energieeffizienz ein sehr wichtiger Faktor, zudem erwarten Nutzer eine möglichst verzögerungsfreie Eingabe. Theoretisch könnten die CPU-Kerne und die Grafikeinheit jegliche Aufgabe berechnen, die Akkulaufzeit und das Reaktionsverhalten wären dann aber nicht konkurrenzfähig. Daher nutzen alle Hersteller DSPs, um Workloads auszulagern und Ressourcen auf den CPU-Kernen sowie der GPU freizuhalten.

  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
Details zum Hexagon 680 DSP (Bild: Qualcomm)

Ein Digital Signal Prozessor ist in einem gewissen Rahmen programmierbar, was ihn flexibler macht als fest verdrahtete Einheiten beispielsweise zur Videodekodierung. Verglichen mit CPU-Kernen eignet sich ein DSP mehr für parallele Aufgaben, da die Hexagon-Architektur auf einem VLIW-Design mit In-Order-Aufgabenabarbeitung basiert, ähnlich wie frühere Grafikchips von AMD.

Neu sind die Hexagon Vector Extensions (HVX) für vier mit bis zu 1.024 Bit sehr lange Instruktionen. Statt Floating- werden zugunsten der Sparsamkeit nur Fixed-Float-Berechnungen unterstützt. Aufgaben wie das selektive Aufhellen und Entrauschen von Bildern, die der Spectre-Bildprozessor (ISP) mit bis zu 1.200 MPix/s anliefert, laufen über HVX. Als Beispiel nennt Qualcomm unterbelichtete Fotos von nächtlichen Szenen. Die Geschwindigkeit des Hexagon-DSP soll für Post-Processing von 4K-Videos und 20-Megapixelfotos ausreichen.

Verglichen mit CPU-Kernen wie Qualcomms eigenen Kraits hat der Hexagon Vorteile wie einen 512 KByte großen L2-Cache, der fast wie eine L1-Stufe arbeitet, die bei den Kraits nur 32 KByte fasst. Bei Kernel-Berechnungen wie dem Vergrößern von Bildern bei Zuhilfenahme eines Gauß-Filters soll der Hexagon 50 Prozent flotter sein als vier Krait-Kerne und ein Viertel der Leistungsaufnahme der CPU aufweisen.

  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
  • Details zum Hexagon 680 DSP (Bild: Qualcomm)
Details zum Hexagon 680 DSP (Bild: Qualcomm)

Als weitere Verbesserung hat Qualcomm, anders als bei früheren Snapdragons (810 und davor), eine DSP-basierte Lösung statt eine Micro-Controller-Unit mit ARM-Kern für die Sensorerfassung im Snapdragon-820-Chip verbaut. Der als Low Power Island bezeichnete DSP arbeitet unabhängig vom restlichen SoC. Verglichen mit einem Snapdragon 808 soll der Snapdragon 820 ein Drittel der Energie beim Schrittezählen benötigen.

Hintergrund des Hexagon-DSP ist ein auf Effizienz ausgelegter Snapdragon 820, bei dem foto- und videorelevante Aufgaben weder die CPU-Kerne noch die Grafikeinheit belasten oder aus dem Tiefschlaf aufwecken. Die SoC-Leistungsaufnahme bleibt niedrig, was für die Akkulaufzeit wichtig ist.


eye home zur Startseite
Eheran 25. Aug 2015

Ah, interessant. Danke.

Anonymer Nutzer 25. Aug 2015

Ja genau. Also doppelt so schnell. Nee,beim Energiebedarf ist halt einfach weniger mehr...

Mixermachine 25. Aug 2015

Manche Flagschiffe sollen beim Filmen ziemlich heiß geworden und sein.... Abschaltung...

Anonymer Nutzer 25. Aug 2015

Hier wird sich auch immer noch mit um den Sound gekümmert. Der Unterschied sind aber die...

ms (Golem.de) 25. Aug 2015

Gemeint ist, man wird einem VLIW-DSP mit Fixed-Point wenig Float entlocken.



Anzeige

Stellenmarkt
  1. Rohde & Schwarz Cybersecurity GmbH, Leipzig
  2. Jobware Online-Service GmbH, Paderborn
  3. T-Systems International GmbH, Bonn
  4. HDPnet GmbH, Heidelberg


Anzeige
Hardware-Angebote
  1. 543,73€
  2. (täglich neue Deals)
  3. (reduzierte Überstände, Restposten & Co.)

Folgen Sie uns
       


  1. Debatte nach Wanna Cry

    Sicherheitslücken veröffentlichen oder zurückhacken?

  2. Drohne

    DJI Spark ist ein winziger Spaßcopter mit Gestensteuerung

  3. Virb 360

    Garmins erste 360-Grad-Kamera nimmt 5,7K-Videos auf

  4. Digitalkamera

    Ricoh WG-50 soll Fotos bei extremen Bedingungen ermöglichen

  5. Wemo

    Belkin erweitert Smart-Home-System um Homekit-Bridge

  6. Digital Paper DPT-RP1

    Sonys neuer E-Paper-Notizblock wird 700 US-Dollar kosten

  7. USB Typ C Alternate Mode

    Thunderbolt-3-Docks von Belkin und Elgato ab Juni

  8. Sphero Lightning McQueen

    Erst macht es Brummbrumm, dann verdreht es die Augen

  9. VLC, Kodi, Popcorn Time

    Mediaplayer können über Untertitel gehackt werden

  10. Engine

    Unity bekommt 400 Millionen US-Dollar Investorengeld



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
The Surge im Test: Frust und Feiern in der Zukunft
The Surge im Test
Frust und Feiern in der Zukunft
  1. Computerspiele und Psyche Wie Computerspieler zu Süchtigen erklärt werden sollen
  2. Wirtschaftssimulation Pizza Connection 3 wird gebacken
  3. Mobile-Games-Auslese Untote Rundfahrt und mobiles Seemannsgarn

Redmond Campus Building 87: Microsofts Area 51 für Hardware
Redmond Campus Building 87
Microsofts Area 51 für Hardware
  1. Windows on ARM Microsoft erklärt den kommenden x86-Emulator im Detail
  2. Azure Microsoft betreut MySQL und PostgreSQL in der Cloud
  3. Microsoft Azure bekommt eine beeindruckend beängstigende Video-API

3D-Druck bei der Bahn: Mal eben einen Kleiderhaken für 80 Euro drucken
3D-Druck bei der Bahn
Mal eben einen Kleiderhaken für 80 Euro drucken
  1. Bahnchef Richard Lutz Künftig "kein Ticket mehr für die Bahn" notwendig
  2. Flatrate Öffentliches Fahrradleihen kostet 50 Euro im Jahr
  3. Nextbike Berlins neues Fahrradverleihsystem startet

  1. Re: Warum sind die Flügel nicht einklappbar?

    LASERwalker | 09:37

  2. Wenn ich so an meinen alten Arbeitgeber denke...

    textract | 09:29

  3. Re: Unix, das Betriebssystem von Entwicklern, für...

    renegade334 | 09:26

  4. Re: Coole Sache aber,

    Bruce Wayne | 09:20

  5. Re: Wirklich nicht umweltfreundlich?

    TW1920 | 09:20


  1. 09:02

  2. 08:28

  3. 07:16

  4. 07:08

  5. 18:10

  6. 10:10

  7. 09:59

  8. 09:00


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel