Abo
  • Services:
Anzeige
Physik: Zeitreisen ohne Paradoxon
(Bild: Joe Raedle/Getty Images)

Physik: Zeitreisen ohne Paradoxon

In der Science-Fiction gehen Zeitreisen meistens schief, weil Ereignisse in der Vergangenheit die Zukunft zum Schaden des Helden beeinflussen. Das muss nicht sein - gleich zwei Theorien haben eine plausible Erklärung.

Anzeige

Filme wie Butterfly Effect oder Zurück in die Zukunft spielen mit der Idee, dass ein Zeitreisender mit seinen Handlungen in der Vergangenheit der Gegenwart eine neue Form geben könnte. Meist scheitern die Helden dabei, denn es ist unmöglich, jegliche Auswirkungen einer Veränderung vorherzusehen. Irgendwann stößt jeder Zeitreisende auf das sogenannte Großvater-Paradoxon: Tötet jemand in der Vergangenheit seinen eigenen Opa, löscht er damit unweigerlich die eigene Existenz aus und verhindert gleichzeitig sowohl die Zeitreise als auch den Mord.

Es ist dieses Paradoxon, das in seinen vielen Abwandlungen dazu führt, dass jeder Film mit Zeitreise-Thematik auf die eine oder andere Art unlogisch wird. Der Zuschauer empfindet das so, weil die zeitliche Abfolge von Ursache und Wirkung, die Kausalität, im gesunden Menschenverstand tief eingebrannt ist. Das heißt aber nicht, dass Zeitreisen allein deshalb unmöglich sein müssten: Auch die Quantenphysik samt ihren Erscheinungen wie der Quanten-Teleportation oder der Verschränkung ist der menschlichen Logik nicht zugänglich.

Tatsächlich erlaubt die allgemeine Relativitätstheorie Lösungen, die zur Möglichkeit von Zeitreisen führen. Der erste Mathematiker, der das ausrechnete, war 1937 der Niederländer Willem Jacob van Stockum. Wirklich bekannt wurde das mathematische Konstrukt, die Closed timelike Curves (CTCs, übersetzt etwa geschlossene zeitähnliche Kurven) erst 1949 mit den Berechnungen von Kurt Gödel. Geschlossene Kurven im Raum sind nichts Besonderes: Wer einmal um sein Haus läuft, hat eine solche Kurve beschritten. Eine CTC ist aber in allen vier Dimensionen geschlossen, also in Raum und Zeit. Ein Objekt, das sich auf einer solchen Kurve bewegt, kommt irgendwann wieder am selben Ort in seiner eigenen Vergangenheit an.

CTCs wären, gäbe es sie, ziemlich praktisch. Forscher schlagen zum Beispiel vor, einen Computer auf Zeitreise zu schicken. Das Prinzip: Man schickt den Computer einfach so lange und so oft in die Vergangenheit, bis ein Problem zum heutigen Zeitpunkt gelöst ist. Auf diese Weise wären universelle Computer möglich, die sogar dem Quantenrechner weit überlegen wären. Das Großvater-Paradoxon ist dabei leider ein echtes und nicht nur logisches Hindernis, denn jedes kleinste Photon, das in die Vergangenheit reist, kann den Effekt auslösen - Großväter werden dazu gar nicht benötigt.

Doch man muss nicht so radikal wie Stephen Hawking sein und Zeitreisen deshalb gleich ganz ausschließen. Hawking glaubt, dass sich das Zeitreise-Problem mit einer künftigen Theorie der Quantengravitation komplett auflösen werde, weil diese eine Art Vergangenheits-Schutz enthalten werde.

MIT-Physiker Seth Lloyd schlägt eine andere Lösung vor. Er setzt auf das aus der Quantenphysik bekannte Prinzip der Post-Selection. Ein quantenmechanisches System mit dieser Fähigkeit lässt von vornherein nur bestimmte Ergebnisse zu. Kombiniert man dies mit einer Quanten-Teleportation, dann sind gewissermaßen nur Kurven begehbar, die garantiert nicht zu einem Paradoxon führen, also selbst-konsistent sind.

Der theoretische Physiker David Deutsch schlägt eine andere Lösung vor, die zwei seiner Kollegen kürzlich in einer Simulation überprüft haben. Demnach löst sich das Paradoxon auf Quantenebene in Nichts auf, weil hier statt eindeutiger Abläufe (Determinismus) die Gesetze von Zufall und Wahrscheinlichkeit herrschen. Es kommt nur darauf an, dass jedes Teilchen, das sich auf eine geschlossene zeitähnliche Bahn begibt, am Ende mit Eigenschaften mit gleicher Wahrscheinlichkeit erscheint. Wenn es also am Anfang eine 50-prozentige Chance hat, ein bestimmtes Ereignis auszulösen, muss es am Ende - das ja auch der Anfang ist - dieselbe Wahrscheinlichkeit haben.

Der Scientific American überträgt das so auf das Großvater-Paradoxon: Wenn eine Person geboren wird, kommt sie bereits mit einer bestimmten - sagen wir: 50-prozentigen - Wahrscheinlichkeit auf die Welt, ihren eigenen Großvater umzubringen. Reist dieser Mensch nun aber in die Vergangenheit, hat der Opa eine entsprechend hohe - hier auch 50-prozentige - Chance, dem Anschlag zu entgehen. Der Killer bliebe also trotz des Mordes am Leben. Jedenfalls wenn er den Gesetzen der Quantenphysik genügt - wozu er allerdings sehr, sehr klein sein müsste.

Falls Sie sich an dieser Stelle an die Schrödinger-Katze erinnert fühlen, die ebenfalls zwischen Leben und Tod schwebt: Richtig, auch diese ist, wie jedes Teilchen im Quantenregime, einer Überlagerung verschiedener Wahrscheinlichkeiten unterworfen. Einer echten Zeitreise bringt uns die Idee also nicht näher - wohl aber einer Anwendung von CTCs im Allerkleinsten, etwa bei Quantencomputern. Allerdings treten CTCs auch nicht einfach so im Alltag auf. Sie entstehen als Lösungen der allgemeinen Relativitätstheorie nur, wenn der Raum extrem verzerrt wird, etwa in der Nähe eines Schwarzen Lochs.


eye home zur Startseite
FuturesCaptain 28. Feb 2017

Sehr interessant zu lesen, danke... und... ich muss zugeben... erst beim 2. Mal lesen...

Neuro-Chef 10. Jul 2015

So wie in den Verfilmungen von "Time Machine", quasi gespult? :D Wenn Reisen in die...

Zeitvertreib 01. Okt 2014

Geht doch um Zeitreisen hier in dem Artikel ;) Sollte das jemals möglich sein werde ich...

pythoneer 22. Sep 2014

Ah, Ok. Natürlich ist die von mir angesprochene Viele-Welten-Interpretation nicht in...

pythoneer 21. Sep 2014

Nicht nach der Kopenhagener Deutung der Quantenmechanik. Diese gilt momentan als die...



Anzeige

Stellenmarkt
  1. ETAS GmbH & Co. KG, Stuttgart
  2. Rohde & Schwarz Cybersecurity GmbH, Berlin
  3. Robert Bosch GmbH, Berlin
  4. Ratbacher GmbH, München


Anzeige
Hardware-Angebote
  1. 269,90€ + 3,99€ Versand (Vergleichspreis 297€)
  2. täglich neue Deals

Folgen Sie uns
       


  1. Bundestagswahl 2017

    Union und SPD verlieren, Jamaika-Koalition rückt näher

  2. IFR

    Zahl der verkauften Haushaltsroboter steigt stark an

  3. FTTH

    CDU für Verkauf der Telekom-Aktien

  4. Konkurrenz

    Unitymedia gegen Bürgerprämie für Glasfaser

  5. Arduino MKR GSM und WAN

    Mikrocontroller-Boards überbrücken weite Funkstrecken

  6. Fahrdienst

    London stoppt Uber, Protest wächst

  7. Facebook

    Mark Zuckerberg lenkt im Streit mit Investoren ein

  8. Merged-Reality-Headset

    Intel stellt Project Alloy ein

  9. Teardown

    Glasrückseite des iPhone 8 kann zum Problem werden

  10. E-Mail

    Adobe veröffentlicht versehentlich privaten PGP-Key im Blog



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
Wireless Qi: Wie die Ikealampe das iPhone lädt
Wireless Qi
Wie die Ikealampe das iPhone lädt
  1. Noch kein Standard Proprietäre Airpower-Matte für mehrere Apple-Geräte

Apples iPhone X in der Analyse: Ein iPhone voller interessanter Herausforderungen
Apples iPhone X in der Analyse
Ein iPhone voller interessanter Herausforderungen
  1. Smartphone Apple könnte iPhone X verspätet ausliefern
  2. Face ID Apple erlaubt nur ein Gesicht pro iPhone X
  3. iPhone X Apples iPhone mit randlosem OLED-Display kostet 1.150 Euro

Metroid Samus Returns im Kurztest: Rückkehr der gelenkigen Kopfgeldjägerin
Metroid Samus Returns im Kurztest
Rückkehr der gelenkigen Kopfgeldjägerin
  1. Doom, Wolfenstein, Minecraft Nintendo kriegt große Namen
  2. Nintendo Das NES Classic Mini kommt 2018 noch einmal auf den Markt
  3. Nintendo Mario verlegt keine Rohre mehr

  1. Re: Das stimmt imho so nicht, ...

    Der Held vom... | 21:46

  2. Re: Kein Band 20

    RaZZE | 21:45

  3. Re: CDU, AfD und FDP - Bahamas Koalition

    azeu | 21:43

  4. Re: Und bei DSL?

    Matty194 | 21:42

  5. Re: Endlich Reißleine ziehen.

    Ovaron | 21:40


  1. 19:04

  2. 15:18

  3. 13:34

  4. 12:03

  5. 10:56

  6. 15:37

  7. 15:08

  8. 14:28


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel