Abo
  • Services:
Anzeige
Selfrando soll den Tor-Browser sicherer machen und Nutzer vor Deanonymisierung schützen.
Selfrando soll den Tor-Browser sicherer machen und Nutzer vor Deanonymisierung schützen. (Bild: David Bates/Golem.de)

PET Symposium: Darmstädter Forscher wollen Tor sicherer machen

Selfrando soll den Tor-Browser sicherer machen und Nutzer vor Deanonymisierung schützen.
Selfrando soll den Tor-Browser sicherer machen und Nutzer vor Deanonymisierung schützen. (Bild: David Bates/Golem.de)

Die für Tor entwickelte Erweiterung Selfrando soll mit besserer Code Randomization Schutz gegen Laufzeitangriffe bieten. Sogar Attacken wie jene des FBI gegen den Drogenmarktplatz Silkroad sollen so unmöglich werden.

Seitdem es dem FBI gelungen ist, Teile des Tor-Netzwerkes zu kompromittieren, arbeiten Experten in aller Welt an Verbesserungen des Anonymisierungsdienstes.

Anzeige

Forscher des System Security Lab der Technischen Universität Darmstadt haben heute im Rahmen des Privacy Enhancing Technologies Symposium eine Tor-Erweiterung vorgestellt, die gegen sogenannte Code-Reuse-Attacken schützen soll. Das System mit dem Namen Selfrando wurde in Zusammenarbeit mit der Immunant, Inc. der University of California in Irvine sowie dem Tor-Projekt selbst entwickelt.

Besserer Schutz gegen bekanntes Angriffsszenario

Code-Reuse-Attacken nutzen Speicher- und Programmierfehler aus, um ein beliebiges Schadverhalten auf einem Computersystem zu provozieren. Weil ein Angreifer dabei keinen eigenen Schadcode einschleusen muss, sondern bestehenden, eigentlich gutartigen Code lediglich wiederverwendet, sind solche Angriffe schwerer abzuwehren.

Zwar gibt es bereits Schutzmechanismen, wie etwa Speicherverwürfelung (Standard Address Space Layout Randomization, kurz ASLR), mit deren Hilfe Programmen Adressbereiche auf zufälliger Basis zugewiesen werden. Diese zeigten aber in der Vergangenheit immer wieder Schwächen. Dies liege daran, dass ASLR lediglich den gesamten Programmcode als Block in einen anderen Speicherbereich verschiebe, schreiben die Darmstädter Forscher.

  • Darstellung der Funktionsweise von Selfrando im Tor-Browser. (Quelle: CYSEC, TU Darmstadt)
Darstellung der Funktionsweise von Selfrando im Tor-Browser. (Quelle: CYSEC, TU Darmstadt)

Bereits bei Tor im Testeinsatz

Selfrando dagegen soll den Programmcode in Einzelteilen zufällig angeordnet im Speicher ablegen. Die Anordnung ändere sich dabei bei jedem Neustart des Programms. "Je feingradiger die Randomisierung, desto sicherer ist das System", erklärt Ahmad-Reza Sadeghi von der TU Darmstadt Golem.de. Limitiert werde dies lediglich durch den Mehrbedarf an Rechenkraft bei der Programmausführung. Sadeghi zeigt sich jedoch davon überzeugt, dass Selfrando stark genug sei, um gegen Angriffe wie den des FBI standzuhalten.

Das Tor-Projekt hat Selfrando in den Nightly Builds seiner gehärteten Browser-Version bereits im Testlauf. Auch wenn Selfrando explizit als Reaktion auf die Schwächen des Tor-Browsers gegenüber dem vermutlichen FBI-Hack entwickelt wurde, ließe sich die Technologie wie auch ASLR in anderer Software verwenden, um diese gegen vergleichbare Angriffe zu schützen.

Auch Tor-Alternativen in Arbeit

Andere Ansätze zum Schutz gegen Attacken wie jene des FBI, die ebenfalls im Rahmen des PET-Symposiums diskutiert werden sollen, gehen noch einen Schritt weiter. Das am MIT und der École Polytechnique Fédérale Lausanne in Entwicklung befindliche System Riffle soll anonymes Surfen im Netz durch zufällige Permutation der Reihenfolge von übertragenen Inhalten sicherer als Tor machen. Die Entwickler nennen dieses Prinzip "verifizierbares Vermischen". Riffle ist jedoch nicht mit dem bestehenden Tor-Netzwerk kompatibel.


eye home zur Startseite
Karl-Heinz 21. Jul 2016

liegt doch in der Nähe von Wixhausen!



Anzeige

Stellenmarkt
  1. Lahnpaper GmbH, Lahnstein
  2. Schwarz Dienstleistung KG, Neckarsulm
  3. Biomax Informatics AG, Planegg
  4. Diehl Metering GmbH, Nürnberg


Anzeige
Spiele-Angebote
  1. (-75%) 2,49€
  2. 64,97€/69,97€
  3. 35,00€ (nur für Prime-Mitglieder)

Folgen Sie uns
       


  1. Neuland erforschen

    Deutsches Internet-Institut entsteht in Berlin

  2. Squad

    Valve heuert Entwickler des Kerbal Space Program an

  3. James Gosling

    Java-Erfinder wechselt zu Amazon Web Services

  4. Calliope Mini im Test

    Neuland lernt programmieren

  5. Fernwartung

    Microsoft kämpft weiter gegen Support-Betrüger

  6. Streit beendet

    Nokia und Apple tauschen Patentstreit gegen Zusammenarbeit

  7. Voyager

    Facebook ist mit Glasfasertechnik schnell erfolgreich

  8. HP

    Im Envy 13 steckt eine Geforce MX150

  9. Quantencomputer

    Nano-Kühlung für Qubits

  10. Rockstar Games

    Red Dead Redemption 2 auf Frühjahr 2018 verschoben



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
Asus B9440 im Test: Leichtes Geschäftsnotebook liefert zu wenig Business
Asus B9440 im Test
Leichtes Geschäftsnotebook liefert zu wenig Business
  1. ROG-Event in Berlin Asus zeigt gekrümmtes 165-Hz-Quantum-Dot-Display und mehr
  2. Asus Tinker Board im Test Buntes Lotterielos rechnet schnell

Quantencomputer: Was sind diese Qubits?
Quantencomputer
Was sind diese Qubits?
  1. IBM Q Mehr Qubits von IBM
  2. Verschlüsselung Kryptographie im Quantenzeitalter
  3. Quantencomputer Bosonen statt Qubits

HTC U11 im Hands on: HTCs neues Smartphone will gedrückt werden
HTC U11 im Hands on
HTCs neues Smartphone will gedrückt werden
  1. HTC Vive Virtual Reality im Monatsabo
  2. Sense Companion HTCs digitaler Assistent ist verfügbar
  3. HTC U Ultra im Test Neues Gehäuse, kleines Display, bekannte Kamera

  1. Java

    Teebecher | 12:57

  2. Schön, aber ...

    Icestorm | 12:56

  3. Re: Fußball!

    quineloe | 12:54

  4. Re: 1Terabit braucht in 10 Jahren keiner mehr...

    Thomas Hofmann | 12:52

  5. Re: Bürosucht...

    quineloe | 12:52


  1. 12:58

  2. 12:47

  3. 12:30

  4. 12:00

  5. 11:51

  6. 11:41

  7. 11:26

  8. 11:12


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel