Neuronale Netzwerke: Roboter lernt selbstständig das Greifen und Werfen

Wissenschaftler entwickeln Tossingbot, einen Roboterarm, der verschiedene Objekte selbstständig werfen und greifen kann. Dabei muss er Flugeigenschaften beachten. Nach 14 Stunden Training wirft er trotzdem genauer als ein Mensch.

Artikel veröffentlicht am ,
Tossingbot wirft zuverlässig Objekte in die Schale.
Tossingbot wirft zuverlässig Objekte in die Schale. (Bild: Youtube.com/Andy Zeng)

Wissenschaftler der Columbia University, Princeton University und des MIT haben einen Roboter entwickelt, der selbstständig zufällige Objekte aus einer Kiste greifen und in verschiedene Schachteln werfen kann. Die Tossingbot genannte Maschine setzt neuronale Netzwerke ein, um sich diesen Greif- und Wurfprozess selbst beizubringen. Das Projekt entsteht in Zusammenarbeit mit Google. Die Wissenschaftler geben an, dass ihr System mehr als 500 Aktionen pro Stunde ausführen kann, während momentan gebräuchliche Roboter knapp 300 Aktionen pro Stunde schaffen.

Stellenmarkt
  1. (Junior) SAP Projektmanager Accounting and Finance (m/w/d)
    Lidl Dienstleistung GmbH & Co. KG, Bad Wimpfen
  2. SAP Inhouse Consultant Schwerpunkt Supply Chain (m/w/d)
    CREATON GmbH, Wertingen
Detailsuche

Tossingbot nutzt drei neuronale Netzwerke, die jeweils für das Erkennen der Objekte in der Kiste, den Greifprozess und den Wurfprozess eingesetzt werden. Kameras oberhalb der Kiste und oberhalb der in einem 3x4-Gitter angeordneten Zielschachteln analysieren den Lernprozess. Der Roboter kann somit erkennen, ob er danebengeworfen oder getroffen hat und seinen Confidence-Wert entsprechend anpassen. Außerdem erstellt er eine Heatmap von Objekten in der vor ihm stehenden Schale. Diese gibt an, um welche Objekte es sich wahrscheinlich handelt - eine Banane, einen Tischtennisball oder einen der vielen anderen Gegenstände.

14 Stunden Training

Jedes Objekt hat eine unterschiedliche Form, ein anderes Gewicht und verhält sich damit physikalisch im Flug verschieden. Das muss Tossingbot berücksichtigen, genau wie die Art, ein Objekt zu greifen. Zum Beginn des Trainings versucht die Maschine deshalb erst einmal nur, Dinge überhaupt zu greifen. Die Forscher geben zufallsgenerierte Startwerte für Gewichtungen ein. Nach 14 Stunden ständigem Greifen und Werfen und 10.000 Trainingsschritten soll die Genauigkeit beim Werfen 85 Prozent, beim Greifen 87 Prozent betragen. Die Forscher selbst können nicht so genau werfen, so wie wohl viele Menschen auch. Der Roboter trainiert ohne menschliche Interaktion, da er das Szenario selbstständig zurücksetzen kann, indem er die Schalen anhebt und geworfene Teile in die Kiste vor ihm zurückfallen.

Noch ist der Aufbau des Systems ziemlich strukturiert: Die 3x4-Matrix besteht aus gleich großen Schachteln, die sich immer an der gleichen Position befinden. Außerdem sind die zu greifenden Objekte während des Trainings immer gleich. Es wäre aber in Zukunft vorstellbar, solche Maschinen in der Lagerarbeit oder Fertigung einzusetzen, wenn sie in flexibleren Umgebungen genutzt werden können.

Bitte aktivieren Sie Javascript.
Oder nutzen Sie das Golem-pur-Angebot
und lesen Golem.de
  • ohne Werbung
  • mit ausgeschaltetem Javascript
  • mit RSS-Volltext-Feed


Aktuell auf der Startseite von Golem.de
Tesla-Fabrik
In Grünheide soll "totales Chaos" herrschen

Die Tesla-Fabrik in Grünheide hinkt ihren Produktionszielen noch weit hinterher. Es gibt zu wenig Personal oder die Mitarbeiter kündigen wieder.

Tesla-Fabrik: In Grünheide soll totales Chaos herrschen
Artikel
  1. Kaufberatung: 2022 war ein besonders guter ANC-Kopfhörerjahrgang
    Kaufberatung
    2022 war ein besonders guter ANC-Kopfhörerjahrgang

    Wer derzeit nach einem besonders guten Kopfhörer oder Bluetooth-Hörstöpseln mit Active Noise Cancellation (ANC) sucht, hat es so einfach wie noch nie.
    Ein Ratgebertext von Ingo Pakalski

  2. Simple ML: Google Sheets bekommt KI-Tool für die Tabellenerstellung
    Simple ML
    Google Sheets bekommt KI-Tool für die Tabellenerstellung

    Mit Googles Simple ML können Kunden mit gespeicherten Daten neue Tabellen ausfüllen oder prüfen lassen. Das soll ohne Vorkenntnisse gelingen.

  3. Elbit Systems Deutschland: Neue Bundeswehr-Funkgeräte lösen Retrogeräte von 1982 ab
    Elbit Systems Deutschland
    Neue Bundeswehr-Funkgeräte lösen Retrogeräte von 1982 ab

    Erst vor einem Jahr hat die Bundeswehr für 600 Millionen Euro Funkgeräte aus dem Jahr 1982 nachbauen lassen. Nun werden neue angeschafft.

Du willst dich mit Golem.de beruflich verändern oder weiterbilden?
Zum Stellenmarkt
Zur Akademie
Zum Coaching
  • Schnäppchen, Rabatte und Top-Angebote
    Die besten Deals des Tages
    Daily Deals • PS5 bei Amazon • Samsung SSDs bis -28% • Rabatt-Code für ebay • Logitech Mäuse, Tastaturen & Headsets -53% • HyperX PC-Peripherie -56% • Google Pixel 6 & 7 -49% • PS5-Spiele günstiger • Tiefstpreise: Asus RTX 4080 1.640,90€, Roccat Kone Pro 39,99€, Asus RTX 6950 XT 939€ [Werbung]
    •  /