• IT-Karriere:
  • Services:

Machine Learning: Facebooks KI-Chef sucht neue Sprache für Deep Learning

Der KI-Chef von Facebook möchte die aktuelle Herangehensweise an Deep-Learning-Probleme gern völlig neu denken. Dazu gehört eine Programmiersprache, die effizienter ist als Python, ebenso wie neue Hardware, die nicht nur Matrizen multipliziert.

Artikel veröffentlicht am ,
Facebooks KI-Chef Yann Lecun sucht nach neuen Ansätzen für Deep-Learning.
Facebooks KI-Chef Yann Lecun sucht nach neuen Ansätzen für Deep-Learning. (Bild: Facebook)

Der Auftakt zur diesjährigen International Solid-State Circuits Conference (ISSCC) ist ein historischer Abriss von Facebooks KI-Chef Yann Lecun (PDF), der zusätzlich zu einem Rückblick auf Jahrzehnte von Forschungsarbeit auch über die Zukunft von Deep-Learning-Problemen nachdenkt. Dabei kommt der Forscher zu dem Schluss, dass sich einiges an der bisherigen Vorgehensweise und den Ansätzen zur algorithmischen Umsetzung ändern muss.

Stellenmarkt
  1. WILO SE, Dortmund
  2. IDS Imaging Development Systems GmbH, Obersulm

Dazu gehöre etwa, dass zum Deep Learning eine effizientere Programmiersprache nötig sein könnte, wie Venturebeat berichtet. Bisher werden die meisten Frameworks in diesem Bereich wie zum Beispiel Googles Tensorflow oder Facebooks Pytorch in Python geschrieben. Laut Lecun suchen derzeit aber Google, Facebook und auch andere nach einer kompilierten Sprache, mit der Deep-Learning-Algorithmen effizienter umgesetzt werden können.

Lecun selbst weist aber auch darauf hin, dass dies ein sehr schwierig umzusetzender Schritt sein könnte. Immerhin sei überhaupt nicht klar, ob die Community aus Forschern und Entwicklern diesem Weg überhaupt folgen würde, da "die Leute einfach Python benutzen möchten". Einer Untersuchung von Github zufolge sind Python und bestimmte Python-Pakete derzeit die beliebtesten Werkzeuge für Deep Learning.

Neue Hardware braucht die Community

Lecun ist sich darüber hinaus auch sicher, dass der Bedarf für spezialisierte Hardware, die Deep-Learning-Aufgaben übernimmt, künftig weiter ansteigen wird, wie es im KI-Blog von Facebook heißt. Allerdings verändern sich auch die Algorithmen, die für Deep Learning genutzt werden, teilweise grundsätzlich im Vergleich zu bisherigen Ansätzen.

Golem Akademie
  1. Python kompakt - Einführung für Softwareentwickler
    19./20. April 2021, online
  2. Elastic Stack Fundamentals - Elasticsearch, Logstash, Kibana, Beats
    3.-7. Mai 2021, online
Weitere IT-Trainings

"Möglicherweise müssen wir deshalb die Art und Weise neu erfinden, wie wir Arithmetik in Schaltkreisen durchführen", sagt Lecun zu diesem Problem. Derzeit seien Unternehmen größtenteils abhängig von dem Zulieferer Nvidia zum Beschleunigen der Algorithmen oder darauf angewiesen, eigene Hardware zu gestalten wie etwa Google mit seinen TPU. Dem Magazin ZDnet bestätigte Lecun außerdem, dass auch Facebook intern an eigener Hardware zum Beschleunigen der Berechnungen arbeite, auch wenn er keine Details dazu nennen wollte.

Derzeit werden die Deep-Learning-Aufgaben und -Berechnungen meist auf einfache Matrix-Multiplikationen zurückgeführt, die sich etwa in GPUs sehr schnell ausführen lassen. Mit den TPUs von Google oder den Tensor-Einheiten von Nvidias Modulen für autonome Fahrzeuge wird davon auch massiv Gebrauch gemacht.

Mit Bezug auf dieses Vorgehen sagte Lecun: "Ich denke nicht, dass das die Antwort ist". Was dann aber als Ersatz dienen könnte, weiß auch der Forscher selbst nicht und lagert die Umsetzung einfach aus. "Ich denke, dass die echten Hardware-Genies neue Wege finden müssen, um diese Dinge zu tun".

Bitte aktivieren Sie Javascript.
Oder nutzen Sie das Golem-pur-Angebot
und lesen Golem.de
  • ohne Werbung
  • mit ausgeschaltetem Javascript
  • mit RSS-Volltext-Feed


Anzeige
Spiele-Angebote
  1. 3,39€
  2. 5,99€
  3. 4,25

LRU 20. Feb 2019

Verstehe auch nicht, was an C/C++ verkehrt sein soll. Für effiziente Ressourcen-Nutzung...

Frostwind 19. Feb 2019

Matlab kostet. Matlab ist teilweise richtig schlecht. Matlab ist auch nicht besser als R...

schap23 19. Feb 2019

Julia ist so einfach zu benutzen wie Python, aber in mathematischen Berechnung meist...


Folgen Sie uns
       


Zoom Escaper ausprobiert

Der Zoom Escaper ist eine Möglichkeit, sich aus Videokonferenzen zu schummeln. Wir haben ihn ausprobiert.

Zoom Escaper ausprobiert Video aufrufen
Programm für IT-Jobeinstieg: Hoffen auf den Klebeeffekt
Programm für IT-Jobeinstieg
Hoffen auf den Klebeeffekt

Aktuell ist der Jobeinstieg für junge Ingenieure und Informatiker schwer. Um ihnen zu helfen, hat das Land Baden-Württemberg eine interessante Idee: Es macht sich selbst zur Zeitarbeitsfirma.
Ein Bericht von Peter Ilg

  1. Arbeitszeit Das Sechs-Stunden-Experiment bei Sipgate
  2. Neuorientierung im IT-Job Endlich mal machen!
  3. IT-Unternehmen Die richtige Software für ein Projekt finden

Weclapp-CTO Ertan Özdil: Wir dürfen nicht in Schönheit und Perfektion untergehen!
Weclapp-CTO Ertan Özdil
"Wir dürfen nicht in Schönheit und Perfektion untergehen!"

Der CTO von Weclapp träumt von smarter Software, die menschliches Eingreifen in der nächsten ERP-Generation reduziert. Deutschen Perfektionismus hält Ertan Özdil aber für gefährlich.
Ein Interview von Maja Hoock


    Fiat 500 als E-Auto im Test: Kleinstwagen mit großem Potenzial
    Fiat 500 als E-Auto im Test
    Kleinstwagen mit großem Potenzial

    Fiat hat einen neuen 500er entwickelt. Der Kleine fährt elektrisch - und zwar richtig gut.
    Ein Test von Peter Ilg

    1. Vierradlenkung Elektrischer GMC Hummer SUV fährt im Krabbengang seitwärts
    2. MG Cyberster MG B Roadster mit Lasergürtel und Union Jack
    3. Elektroauto E-Auto-Prämie übersteigt in 2021 schon Vorjahressumme

      •  /