Abo
  • Services:
Anzeige
Das Spektrum des sichtbaren Lichts ist unlizenziert und frei nutzbar.
Das Spektrum des sichtbaren Lichts ist unlizenziert und frei nutzbar. (Bild: Viferico/CC-BY 4.0)

Li-Fi statt Wi-Fi: Dem Internet geht ein Licht auf

Das Spektrum des sichtbaren Lichts ist unlizenziert und frei nutzbar.
Das Spektrum des sichtbaren Lichts ist unlizenziert und frei nutzbar. (Bild: Viferico/CC-BY 4.0)

Technologie der Zukunft oder pulsierender Unsinn: Mit Li-Fi, der Datenübertragung über sichtbares Licht, sollen Datenraten von bis zu 40 Gbit/s erreicht werden. Stabilitätsprobleme machen einen sinnvollen Praxiseinsatz bislang aber unmöglich. Eine Lösung könnten Solarzellen sein.
Eine Analyse von Tobias Rduch

In zwei weiteren ausführlichen Artikeln zum Anhören und Nachlesen haben wir NBase-T und Wigig erklärt, zwei weitere Techniken für das Netzwerk der Zukunft.

Anzeige

Wo viele Menschen gleichzeitig auf das Internet zugreifen, entstehen Engpässe. Die Kapazitäten der Funknetze kommen an ihre Grenzen, Nachbarn stören sich im WLAN gegenseitig, Stahlbetonwände senken den Datendurchsatz. Zudem sind die Netzwerke oft unverschlüsselt, ein Großteil des Datenverkehrs kann mitgelesen werden. Wissenschaftler forschen an einem Standard für die Datenübertragung, der all diese Probleme lösen soll: Visible Light Communication oder Light Fidelity, kurz Li-Fi.

Mit dieser Art der Datenübertragung über sichtbares Licht aus der Deckenlampe sollen Datenraten von bis zu 40 Gbit/s erreicht werden - besonders stromsparend und mit geringen Investitionskosten. Noch klingt das besser, als es ist: Stabilitätsprobleme machen einen sinnvollen Praxiseinsatz bislang unmöglich. Außerdem gibt es viele vollkommen unterschiedliche Formen der optischen Datenübertragung.

Daten aus der Lampe

Schon seit über einem Jahrzehnt forschen diverse Einrichtungen, darunter das Fraunhofer-Institut für photonische Mikrosysteme (IPMS), an dem zukünftigen Datenübertragungsstandard, der das herkömmliche elektromagnetisch funktionierende Wi-Fi ablösen soll. Im Oktober 2011 wurde ein Konsortium aus vier Einrichtungen zur Festlegung eines Standards gebildet. Fraunhofer-Forscher aus Dresden arbeiten inzwischen an einer industriellen Lösung auf Basis der Technologie. Dabei wurde eine Übertragungsgeschwindigkeit von 12,5 Gbit/s erreicht. Das Unternehmen PureLiFi, an dem der deutsche Informatiker und Li-Fi-Pionier Harald Haas beteiligt ist, hat kürzlich LiFi-X vorgestellt, das weltweit erste serienreife System zur Datenübertragung per Li-Fi.

Statt einer Antenne eines Funkrouters kommt dabei eine einfache Leuchtdiode (LED) zum Einsatz. Das von der Lampe emittierte Licht ist das Übertragungsmedium für die Daten. Als Sendeeinheiten werden Leuchtdioden verwendet. Diese können mit einer sehr hohen Frequenz ihre Intensität verringern und der am Endgerät angebrachten Fotozelle, dem Empfänger, Signale übermitteln. Für das menschliche Auge ist dieser Vorgang aufgrund der hohen Schaltungsfrequenz unsichtbar. Durch den permanenten Wechsel der beiden Intensitätszustände des Transmitters können binäre Daten übertragen werden. Doch auch hier steckt mehr dahinter, als man annimmt: Daten müssen zuvor beispielsweise auf verschiedene Träger aufgeteilt werden.

Und was ist nachts?

Für den Rückkanal ist energiesparendes Infrarot vorgesehen, das der Anwender nicht wahrnehmen kann. Interferenzen können gezielt vermieden werden. Diese entstehen, wenn zwei elektromagnetische Wellen mit ähnlicher oder gleicher Frequenz unter gewissen Umständen aufeinandertreffen.

Damit das System korrekt funktionieren kann, muss die Sende-LED die ganze Zeit aktiv bleiben. Selbst in der Nacht funktioniert Li-Fi: Die Lampen werden dafür so weit heruntergedimmt, dass sie für den Nutzer nicht mehr als Lichtquelle wahrnehmbar sind.

Das nutzbare Funkspektrum vergrößert sich

Technisch gesehen ist das für den Menschen sichtbare Licht ebenso wie Funkwellen eine elektromagnetische Welle. Die Frequenz ist im Terahertz-Bereich, ist allerdings deutlich höher als die bei den im GHz-Bereich verwendeten Zentimeterwellen. Der Nachteil: Nanometerwellen wie Licht können dichte Materie nicht durchdringen, jedes Hindernis schränkt die Reichweite ein.

Das hat auch etwas Gutes: Da Lichtwellen bereits am Durchdringen kleiner Hindernisse scheitern, ist eine Abschottung des Netzwerks durch eine einfache räumliche Trennung möglich. Für Unternehmen kann das aus Datenschutzgründen von Vorteil sein. Bei geschlossenem Raum kann der interne Datenverkehr nicht mitgelesen werden. Es ist jedoch weiterhin möglich, Datenpakete durch optische Umleitungen abzufangen. Dazu muss physikalischer Zugriff auf den Raum bestehen.

Ein weiterer Vorteil: Es steht ein größeres Spektrum zur Verfügung als bei Funkwellen. Dadurch können beim einzelnen Nutzer höhere Übertragungsgeschwindigkeiten erzielt und ein störungsfreier Betrieb gewährleistet werden. Das Spektrum des sichtbaren Lichts ist zudem unlizenziert und für jeden frei nutzbar.

Die Deckenlampe wird umgerüstet 

eye home zur Startseite
serra.avatar 23. Okt 2016

wir haben auch seit Jahrzehnten immer mehr "Strahlenbelastung" und? Seit Jahrzehnten...

l.b. 17. Okt 2016

Das meinte ich ja, Powerline kann man knicken :D

FreiGeistler 15. Okt 2016

Gibts beides viel zu viel. ^^

FreiGeistler 15. Okt 2016

photonik.de/Ein einzelnes Photon sehen Brems dich bitte etwas, ok?

Berner Rösti 14. Okt 2016

Wie z.B. "Schiffe versenken". Eben aufgrund der großen Latenz sind solche Spiele dann...



Anzeige

Stellenmarkt
  1. Daimler AG, Stuttgart-Vaihingen
  2. SIGMETA Informationsverarbeitung und Technik GmbH, München
  3. Viega Holding GmbH & Co. KG, Attendorn
  4. censhare AG, München


Anzeige
Hardware-Angebote
  1. ab 799,90€
  2. ab 649,90€
  3. 5,99€

Folgen Sie uns
       


  1. Quartalsbericht

    Microsoft kann Gewinn durch Cloud mehr als verdoppeln

  2. Mobilfunk

    Leistungsfähigkeit der 5G-Luftschnittstelle wird überschätzt

  3. Drogenhandel

    Weltweit größter Darknet-Marktplatz Alphabay ausgehoben

  4. Xcom-2-Erweiterung angespielt

    Untote und unbegrenzte Schussfreigabe

  5. Niantic

    Das erste legendäre Monster schlüpft demnächst in Pokémon Go

  6. Bundestrojaner

    BKA will bald Messengerdienste hacken können

  7. IETF

    DNS wird sicher, aber erst später

  8. Dokumentation zum Tor-Netzwerk

    Unaufgeregte Töne inmitten des Geschreis

  9. Patentklage

    Qualcomm will iPhone-Importstopp in Deutschland

  10. Telekom

    Wie viele Bundesfördermittel gehen ins Vectoring?



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
Moto Z2 Play im Test: Bessere Kamera entschädigt nicht für kürzere Akkulaufzeit
Moto Z2 Play im Test
Bessere Kamera entschädigt nicht für kürzere Akkulaufzeit
  1. Modulares Smartphone Moto Z2 Play kostet mit Lautsprecher-Mod 520 Euro
  2. Lenovo Hochleistungs-Akku-Mod für Moto Z
  3. Moto Z Schiebetastatur-Mod hat Finanzierungsziel erreicht

Razer Lancehead im Test: Drahtlose Symmetrie mit Laser
Razer Lancehead im Test
Drahtlose Symmetrie mit Laser
  1. Razer Blade Stealth 13,3- statt 12,5-Zoll-Panel im gleichen Gehäuse
  2. Razer Core im Test Grafikbox + Ultrabook = Gaming-System
  3. Razer Lancehead Symmetrische 16.000-dpi-Maus läuft ohne Cloud-Zwang

Ikea Trådfri im Test: Drahtlos (und sicher) auf Schwedisch
Ikea Trådfri im Test
Drahtlos (und sicher) auf Schwedisch
  1. Die Woche im Video Kündigungen, Kernaussagen und KI-Fahrer
  2. Augmented Reality Ikea will mit iOS 11 Wohnungen virtuell einrichten
  3. Space10 Ikea-Forschungslab untersucht Umgang mit KI

  1. Re: Kennt jemand ein Tool

    User_x | 00:25

  2. Dann halt auf die Nationalität...

    User_x | 00:14

  3. Wieso können sie das nicht machen, ohne den...

    __destruct() | 00:08

  4. Re: Dass SÜ funktioniert erklärt warum der...

    janoP | 00:05

  5. Re: Gibt nur 4 sinnvolle Zahlungsarten...

    My1 | 00:00


  1. 23:50

  2. 19:00

  3. 18:52

  4. 18:38

  5. 18:30

  6. 17:31

  7. 17:19

  8. 16:34


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel