• IT-Karriere:
  • Services:

Learning Gripper: Robotergreifer lernt mit Ball

Wie kann ein Roboter Äpfel sortieren? Das Unternehmen Festo hat eine Methode gefunden: Ein pneumatisch betriebener Robotergreifer mit vier Fingern lernt selbstständig, diese Aufgabe zu bewältigen.

Artikel veröffentlicht am ,
Learning Gripper: Greifer mit vier Zeigefingern
Learning Gripper: Greifer mit vier Zeigefingern (Bild: Festo)

Hektisch bewegen sich die Finger von zwei robotischen Greifern am Stand des Esslinger Unternehmens Festo auf der Hannover Messe (Halle 15, D07). Scheinbar willkürlich balancieren sie einen schwarzen Ball mit dem Herstellerlogo. Tatsächlich sind die Bewegungen zumindest des eines Greifers zielgerichtet: Mit wenigen Bewegungsabfolgen schafft er es, den Ball so zu positionieren, dass sich der blaue Schriftzug oben befindet.

Stellenmarkt
  1. Bundesanstalt für Immobilienaufgaben, Berlin
  2. Hottgenroth Software GmbH & Co. KG, Köln

Learning Gripper heißt der robotische Greifer, der im Rahmen von Festos Bionic Learning Network entwickelt wurde. Der Greifer hat vier Finger, die dem menschlichen Zeigefinger nachgebildet sind: Wie dieser haben auch die Finger des Grippers drei Freiheitsgrade: Der Finger kann vor und zurück sowie nach links und rechts bewegt werden und er kann geknickt werden.

Pneumatische Aktoren

Angetrieben werden die vier Finger von je drei pneumatischen Aktoren. In die Bälge wird Luft mit einem Druck von 2,5 und 3,5 Bar gepumpt. Als Folge verformen sie sich und bewegen so die Finger. Nach einem ähnlichen Prinzip funktioniert auch der bionische Handling Assistent, den Festo 2010 präsentierte. Wie dieser ist auch der Learning Gripper per 3D-Druck hergestellt worden.

  • Der Learning Gripper von Festo auf der Hannover Messe 2013 (Foto: Werner Pluta/Golem.de)
  • Das System lernt, den Ball so zu drehen, dass sich der Schriftzug schließlich oben befindet. (Foto: Festo)
  • Der Greifer hat vier Finger, die von insgesamt zwölf pneumatischen Aktoren (in Blau) angetrieben werden. (Foto: Festo)
  • Detailansicht eines Fingers: Sie sind nach dem Vorbild des menschlichen Zeigefingers gestaltet und haben je drei Freiheitsgrade. (Foto: Festo)
Der Learning Gripper von Festo auf der Hannover Messe 2013 (Foto: Werner Pluta/Golem.de)

Aufgabe des Grippers ist es, den Ball so lange hin- und herzudrehen, bis das Herstellerlogo nach oben zeigt. In dem Ball ist ein Sensor, der die Höhe des Balls über dem Greifer und dessen Ausrichtung erkennt. Zudem ist in der Kuppe eines jeden Fingers ein Kraftsensor, der erfasst, ob der jeweilige Finger Kontakt zum Ball hat.

Der Lernprozess erfolgt nach dem Prinzip von Versuch und Irrtum: Die Finger drehen den Ball zunächst rein zufällig, wobei die Sensorik das Ergebnis erfasst und dem Greifer ein Feedback gibt. Seien die Bewegungen zielführend, erhalte das Systeme eine positive Rückmeldung, erklärt Festo-Mitarbeiter Arne Rost im Gespräch mit Golem.de. Für nicht zielführende Aktionen gebe es entsprechend eine negative Meldung.

Lernen durch Feedback

Zielführend heißt: Die Schrift soll möglichst weit von der Grundfläche des Greifers entfernt sein, je weiter, desto besser und desto positiver die Bewertung. Reinforcement Learning, bestärkendes oder verstärkendes Lernen, heißt diese Methode des Maschinenlernens. Das System bekommt keine Handlung vorgegeben, sondern es lernt anhand seiner eigenen Aktionen und deren Analyse.

Das System lerne also selbstständig, mit einer Umgebung zu interagieren, sagt Rost. Praktisch daran sei, dass sich die Erfahrungen des einen Systems auf ein anderes übertragen ließen: Dieses müsse also nicht selbst den ganzen Lernprozess durchlaufen, sondern übernehme die Algorithmen von dem ersten und passe sie lediglich auf die eigenen Gegebenheiten an.

Äpfel sortieren

Die Idee zu dem System sei durch die Anfrage eines Kunden gekommen, erzählt Rost: Der habe Äpfel automatisch so sortieren wollen, dass sie alle gleich ausgerichtet, mit dem Stiel nach oben im Karton lägen. In so einem Fall übernehme eine Kamera, die das System von oben beobachte, die Aufgabe des Sensors im Ball.

In Hannover zeigt Festo zwei Gripper: Der eine weiß bereits, wie er den Ball drehen muss, um ihn richtig zu positionieren. Der andere Gripper lernt noch. Etwa eine Stunde dauert der Prozess, bis er weiß, wie er richtig mit dem Ball umgeht. Hat er es gelernt, wird er neu gestartet und beginnt wieder von vorn.

Bitte aktivieren Sie Javascript.
Oder nutzen Sie das Golem-pur-Angebot
und lesen Golem.de
  • ohne Werbung
  • mit ausgeschaltetem Javascript
  • mit RSS-Volltext-Feed


Anzeige
Top-Angebote
  1. (u. a. Rising Storm 2: Vietnam für 7,59€, Upwards, Lonely Robot für 2,99€, MONOPOLY® PLUS...
  2. 3 Monate nur 2,95€ pro Monat, danach 9,95€ pro Monat - jederzeit kündbar
  3. (u. a. Aladin 11,52€ (Blu-ray) & 22,99€ (4K), A Toy Story: Alles hört auf kein Kommando 12...

Ping500 17. Apr 2013

Sagen wir es mal anders: Festo ist sich der Öffentlichkeitswirksamkeit der Bionik-Sparte...

caso 11. Apr 2013

Es gibt sich darum dass das Teil 'selber' den Prozess lernt. Der Vorteil ist dass sich...


Folgen Sie uns
       


DLR Istar vorgestellt - Bericht

Die Falcon 2000LX des DLR hat weltweit einzigartige Eigenschaft: sie kann so tun, als wäre sie ein anderes Flugzeug.

DLR Istar vorgestellt - Bericht Video aufrufen
Disney+: Surround-Ton nur auf drei Fire-TV-Modellen
Disney+
Surround-Ton nur auf drei Fire-TV-Modellen

Disney+ bietet auf den meisten Fire-TV-Modellen nur Stereoklang.
Von Ingo Pakalski

  1. Videostreaming Disney+ hat 50 Millionen Abonnenten weltweit
  2. Disney+ Die Simpsons erscheinen im Mai im korrekten Seitenverhältnis
  3. Disney+ im Nachtest Lücken im Sortiment und technische Probleme

CPU-Fertigung: Intel hat ein Netburst-Déjà-vu
CPU-Fertigung
Intel hat ein Netburst-Déjà-vu

Über Jahre hinweg Takt und Kerne ans Limit treiben - das wurde Intel einst schon beim Pentium 4 zum Verhängnis.
Eine Analyse von Marc Sauter

  1. Maxlinear Intel verkauft Konzernbereich
  2. Comet Lake H Intel geht den 5-GHz-Weg
  3. Security Das Intel-ME-Chaos kommt

Bodyhacking: Prothese statt Drehregler
Bodyhacking
Prothese statt Drehregler

Bertolt Meyer hat seine Handprothese mit einem Synthesizer verbunden - das Youtube-Video dazu hat viele interessiert. Wie haben mit dem Psychologieprofessor über sein Projekt und die Folgen des Videos gesprochen.
Ein Interview von Tobias Költzsch


      •  /