Abo
  • Services:
Anzeige
TUM-Forscher Fabian Steiner, Georg Böcherer und Patrick Schulte (v. l. n. r.)
TUM-Forscher Fabian Steiner, Georg Böcherer und Patrick Schulte (v. l. n. r.) (Bild: Denise Panyik-Dale/Alcatel-Lucent)

Glasfaser: Professor verteidigt 1-TBit/s-Versuch im Netz der Telekom

TUM-Forscher Fabian Steiner, Georg Böcherer und Patrick Schulte (v. l. n. r.)
TUM-Forscher Fabian Steiner, Georg Böcherer und Patrick Schulte (v. l. n. r.) (Bild: Denise Panyik-Dale/Alcatel-Lucent)

Andere haben im Glasfasernetz zwar schon sehr viel höhere Datenraten erreicht. Dennoch sei ein aktueller Feldtest an der TU München etwas Besonderes, sagte uns Professor Gerhard Kramer. Denn mit dieser Technik könnten auch Modems besser gemacht werden.

Obwohl über Glasfaser schon sehr viel höhere Datenübertragungsraten erzielt wurden, ist mit einem Feldversuch im Netz der Deutschen Telekom eine ungewöhnlich flexibel einsetzbare Technik erprobt worden. Das erklärte Professor Gerhard Kramer, Inhaber des Lehrstuhls für Nachrichtentechnik der Technischen Universität in München, auf Anfrage von Golem.de. "Ja, andere haben 1 TBit/s auch schon erreicht. Aber der Ansatz war 'obvious': Man nehme einfach 10 Kanäle, die 100 GBit/s übertragen, und erreicht dadurch 1 TBit/s. Oder zum Beispiel 50 Kanäle, um 5 TBit/s zu erreichen."

Anzeige

Vor zwei Jahren hatten Forscher der Technical University of Denmark (DTU) mit 43 Terabit pro Sekunde den Weltrekord bei der Datenübertagung über eine Glasfaserleitung mit einem Laser gebrochen. Damit wurde der Rekord des Karlsruher Instituts für Technologie (KIT) eingestellt, das 2011 eine Übertragungsrate von 26 TBit/s erreicht hatte. Aber dieser Ansatz sei "teuer, ineffizient, und wissenschaftlich uninteressant". Benötigt würden zehn Laser am Sender und zehn Laser am Empfänger, zehn Sendegeräte und zehn Empfangsgeräte. So würde auch viel Bandbreite - vielleicht 20 bis 50 Prozent - verschwendet, weil zehn Kanäle interferenzfrei gehalten werden müssten. Kramer urteilt: "Eine echte Innovation ist dieser Ansatz nun wirklich nicht, und über Wissenschaft darf man gar nicht reden."

Probabilistic Constellation Shaping

Bei dem Versuch der TU München (TUM) kam eine neue Modulationstechnik der Nokia Bell Labs, T-Labs und der Universität zum Einsatz. Bei dem Feldtest wurde der neue Modulationsansatz Probabilistic Constellation Shaping eingesetzt, der das Quadrature-Amplitude-Modulation-Format (QAM) verwendet, um eine höhere Übertragungskapazität über einen definierten Kanal zu erreichen und so die spektrale Effizienz zu verbessern.

Die TUM-Architektur habe die Vorteile, dass jeweils nur ein Sendelaser, Empfangslaser, Sendegerät, Empfangsgerät und nur ein Kanal benötigt würden. Man könne auch viele logische Kanäle bündeln und die Raten je nach Distanz und Zuverlässigkeit adaptieren.

Um diese Raten und Flexibilität zu erreichen, sei eine grundlegend neue Sendearchitektur nötig, die der TUM-Forscher Georg Boecherer erfunden hat. Diese Sendearchitektur könne auch für 5G Wireless, Kabelmodems, DSL-Modems, Satellitenlinks und anderes genutzt werden. "Es ist eine universelle Architektur für alle Kommunikationsgeräte. Die Methode hat also das Potential, die Kommunikation der ganzen Welt zu vereinfachen und in Milliarden von Geräten zu erscheinen", sagte Kramer.


eye home zur Startseite
vh 22. Sep 2016

Danke für die Antwort

Ovaron 22. Sep 2016

"Die Lücke die er hinterläßt füllte ihn vollkommen aus" :-)

lester 22. Sep 2016

Ich bin ebenfalls kein Experte, aber es wäre durchaus Denkbar das eine gewisse...

mainframe 22. Sep 2016

... ist wohl auch, dass es nicht unr im Labor funktioniert, sondern im Praxistest ohne...

M.P. 21. Sep 2016

Link im Artikel zum ursprünglichen Artikel folgen .... Der erklärt etwas besser. Wie QAM...



Anzeige

Stellenmarkt
  1. Robert Bosch GmbH, Crailsheim
  2. RBS wave GmbH, Stuttgart Weilimdorf
  3. über Jobware Personalberatung, Raum Mannheim / Ludwigshafen
  4. Vodafone GmbH, Düsseldorf


Anzeige
Spiele-Angebote
  1. 44,99€ (Vorbesteller-Preisgarantie)
  2. 7,99€
  3. 4,99€

Folgen Sie uns
       


  1. Spielebranche

    "Ungefähr jetzt ist der Prinzessin-Leia-Moment"

  2. Google Yi Halo

    Google-Kamera für 17.000 US-Dollar

  3. DJI Goggles

    Brille ermöglicht Pilotenblick in Drohnen

  4. Lieferwagen

    Amazon will auch autonom fahren

  5. Luftfahrt

    Fliegendes Motorrad Kitty Hawk Flyer hebt ab

  6. Seagate

    Rugged-Festplatte enthält SD-Kartenleser für Drohnen

  7. Grafikkarte

    Manche Radeon RX 400 lassen sich zu Radeon RX 500 flashen

  8. Amazon

    Phishing-Kampagne ködert mit Datenschutzgrundverordnung

  9. Linux-Distribution

    Opensuse ändert erneut sein Versionsschema

  10. Ronin 2 und Cendence

    DJI präsentiert neuen Kamera-Gimbal und Drohnencontroller



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
Quantenphysik: Im Kleinen spielt das Universum verrückt
Quantenphysik
Im Kleinen spielt das Universum verrückt

Elektromobilität: Wie kommt der Strom in die Tiefgarage?
Elektromobilität
Wie kommt der Strom in die Tiefgarage?
  1. Elektroauto Opel Ampera-E kostet inklusive Prämie ab 34.950 Euro
  2. Elektroauto Volkswagen I.D. Crozz soll als Crossover autonom fahren
  3. Sportback Concept Audis zweiter E-tron ist ein Sportwagen

Hate-Speech-Gesetz: Regierung kennt keine einzige strafbare Falschnachricht
Hate-Speech-Gesetz
Regierung kennt keine einzige strafbare Falschnachricht
  1. Neurowissenschaft Facebook erforscht Gedanken-Postings
  2. Rundumvideo Facebooks 360-Grad-Ballkamera nimmt Tiefeninformationen auf
  3. Spaces Facebook stellt Beta seiner Virtual-Reality-Welt vor

  1. Re: Als DSL-Anbieter würde ich dann DSL-Light...

    RipClaw | 08:32

  2. Re: Und wo ist das Problem?

    Tuxgamer12 | 08:30

  3. Re: ...bringt diese oft wiederholte Darstellung...

    Fabo | 08:27

  4. Re: Wer benutzt OpenSUSE noch?

    Lagganmhouillin | 08:21

  5. Eher schlecht stehen die Update-Chancen, wenn es...

    Lupus77 | 08:17


  1. 08:45

  2. 07:51

  3. 07:41

  4. 07:28

  5. 19:00

  6. 17:59

  7. 17:30

  8. 17:10


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel