Kleine Strukturen - aber nicht überall

Intel setzt auf einer weiteren Präsentationsfolie die Fertigungsbezeichnungen der Konkurrenz bewusst in Anführungszeichen, spricht also von "14 nm" und "16 nm". Hintergrund ist, dass Globalfoundries und Samsung sowie TSMC bei ihren Verfahren anders als Intel nicht durchgehend auf 14/16-Nanometer-Strukturen setzen. Eine ältere Folie von Globalfoundries' ähnlichem 14XM-Prozess liefert Details: Nur die FEoL (Front-End-of-Line), also die noch nicht verschalteten FinFET-Transistoren, wird in 14/16 Nanometer gefertigt.

Die MoL (Middle-of-Line) und die BEoL (Back-End-of-Line) basieren auf einer der gestrichenen 20-nm- LPM-Technik (Low Power Mobile). Die Interconnects der Metal-Layer, welche die Transistoren verschalten und für das Packaging vorbereiten, sind daher nicht so kompakt wie bei Intels 14-Nanometer-FinFET-Prozess. Dies erklärt, warum Globalfoundries' und Samsungs 14-nm-FinFET-Verfahren und TSMCs 16FF-Technik etwas hinterherhinken.

  • Mit 14 nm sieht sich Intel vor der Konkurrenz und deren 14nm-/16nm-Prozessen, pickt sich aber die Werte etwas heraus. (Bild: Intel)
  • Vergleich der Transistor- und Interconnect-Abstände; bei Samsung ist 14 nm LPE statt LPP und bei TSMC 16FF statt 16FF+ angegeben. (Bild: Intel)
  • Globalfoundries/Samsung bieten 14 nm als LPP und LPE an; hinter 28 nm Custom verbirgt sich 28 nm SHP für Kaveri und Carrizo. (Bild: Globalfoundries)
  • Erste SRAM-Zelle mit 0,0500 µm² (Bild: Intel)
  • Die Kosten pro mm² steigen, die pro Transistor sinken. (Bild: Intel)
  • Die nahe Zukunft gehört Die-Stacking, vertikal wie horizontal. (Bild: Intel)
  • Der verworfene 14XM-Prozess fertigt wie 14nmFinFET und 16FF nur die Transistoren in 14nm. (Bild: Globalfoundries)
  • Intel plant 10 nm noch ohne EUV. (Bild: Intel)
Der verworfene 14XM-Prozess fertigt wie 14nmFinFET und 16FF nur die Transistoren in 14nm. (Bild: Globalfoundries)

TSMC hatte sich zuletzt stärker auf den 20-Nanometer-Prozess konzentriert und damit den höchsten Umsatz der Firmengeschichte erzielt, da Apple seinen A8-Chip im 20-Nanometer-Verfahren fertigen lässt. TSMC fehlen durch diesen Schritt aber Ressourcen für 16FF und die optimierte Version 16FF+, wohingegen Samsung bereits 14-nm-FinFET-Chips in Serie produziert. Neben dem eigenen Exynos 7420 für das Galaxy S6 ist das Apples A9 für das nächste iPhone.

Intel sieht sich derweil auf einem guten Weg hin zum eigenen 10-nm-FinFET-Prozess: Die Entwicklung verlaufe viel schneller als bei der sich lange verzögernden 14-nm-FinFET-Technik, und die Kosten seien nicht so exorbitant. Auch nach 10 Nanometer möchte Intel an Moore's Law festhalten.

  • Mit 14 nm sieht sich Intel vor der Konkurrenz und deren 14nm-/16nm-Prozessen, pickt sich aber die Werte etwas heraus. (Bild: Intel)
  • Vergleich der Transistor- und Interconnect-Abstände; bei Samsung ist 14 nm LPE statt LPP und bei TSMC 16FF statt 16FF+ angegeben. (Bild: Intel)
  • Globalfoundries/Samsung bieten 14 nm als LPP und LPE an; hinter 28 nm Custom verbirgt sich 28 nm SHP für Kaveri und Carrizo. (Bild: Globalfoundries)
  • Erste SRAM-Zelle mit 0,0500 µm² (Bild: Intel)
  • Die Kosten pro mm² steigen, die pro Transistor sinken. (Bild: Intel)
  • Die nahe Zukunft gehört Die-Stacking, vertikal wie horizontal. (Bild: Intel)
  • Der verworfene 14XM-Prozess fertigt wie 14nmFinFET und 16FF nur die Transistoren in 14nm. (Bild: Globalfoundries)
  • Intel plant 10 nm noch ohne EUV. (Bild: Intel)
Intel plant 10 nm noch ohne EUV. (Bild: Intel)

Allerdings dürfte 7 Nanometer aufgrund der EUV-Lithografie statt Immersionslithografie richtig teuer werden, denn die für EUV erforderlichen Belichtungsmaschinen kosten Milliarden. Extreme Ultra Violet arbeitet mit extrem kurzen Wellenlängen. Die Technik ist also nur im Vakuum einsetzbar, da die Absorptionsrate der Strahlen an der Luft schlicht zu hoch ist. Intels Mark Bohr sagte daher, Intel werde optimistisch versuchen, 7 Nanometer noch ohne EUV zu meistern.

Ohnehin geht die Entwicklung immer weiter weg vom reinen Verkleinern der Strukturen hin zu mehreren Chips auf einem Träger, sogenanntem Die Stacking. Intel packt beispielsweise seit Jahren den Platform Controller Hub (alias Chipsatz) oder Embedded-DRAM neben den Prozessor auf das Substrat.

  • Mit 14 nm sieht sich Intel vor der Konkurrenz und deren 14nm-/16nm-Prozessen, pickt sich aber die Werte etwas heraus. (Bild: Intel)
  • Vergleich der Transistor- und Interconnect-Abstände; bei Samsung ist 14 nm LPE statt LPP und bei TSMC 16FF statt 16FF+ angegeben. (Bild: Intel)
  • Globalfoundries/Samsung bieten 14 nm als LPP und LPE an; hinter 28 nm Custom verbirgt sich 28 nm SHP für Kaveri und Carrizo. (Bild: Globalfoundries)
  • Erste SRAM-Zelle mit 0,0500 µm² (Bild: Intel)
  • Die Kosten pro mm² steigen, die pro Transistor sinken. (Bild: Intel)
  • Die nahe Zukunft gehört Die-Stacking, vertikal wie horizontal. (Bild: Intel)
  • Der verworfene 14XM-Prozess fertigt wie 14nmFinFET und 16FF nur die Transistoren in 14nm. (Bild: Globalfoundries)
  • Intel plant 10 nm noch ohne EUV. (Bild: Intel)
Die Kosten pro mm² steigen, die pro Transistor sinken. (Bild: Intel)

Dieses sogenannte 2,5D-Stacking wird Intel künftig bei Knights Landing verwenden, Nvidia hat es für den Pascal-Grafikchip angekündigt, und AMD soll das Verfahren beim Fiji-Grafikchip nutzen. Eine andere Option ist 3D-Stacking: Statt einzelne Dies nebeneinanderzusetzen, werden diese vertikal gestapelt. Beispiele sind der von AMD und Hynix entwickelte High Bandwidth Memory und Microns Hybrid Memory Cubes. Beide Technologien kombinieren mehrere Lagen aus mittels TVS verbundenen DRAM-Siliziumplättchen.

Bitte aktivieren Sie Javascript.
Oder nutzen Sie das Golem-pur-Angebot
und lesen Golem.de
  • ohne Werbung
  • mit ausgeschaltetem Javascript
  • mit RSS-Volltext-Feed
 Fertigungstechnik: Der 14-Nanometer-Schwindel
  1.  
  2. 1
  3. 2


Anonymer Nutzer 01. Nov 2016

Du hast den Witz NICHT verstanden!

melaw 16. Sep 2016

Moores Gesetz ist doch schon seit dem 90 oder 65nm Prozess nur noch Marketing. Und nun...

Fotobar 10. Apr 2015

+1, ebenso.

QDOS 24. Feb 2015

Warum sollte das ein Thema für die Zukunft sein?! Dass dein Gesülze Als All-Aussage...



Aktuell auf der Startseite von Golem.de
O.MG Cable im Test
Außen USB-Kabel, innen Hackertool

Das O.MG Cable kommt wie ein Standard-USB-Kabel daher. Dass es auch ein Hackertool ist, mit dem sich gruselige Dinge anstellen lassen, sieht man ihm nicht an. Obendrein ist es auch noch leicht zu bedienen.
Ein Test von Moritz Tremmel

O.MG Cable im Test: Außen USB-Kabel, innen Hackertool
Artikel
  1. Entlassungen: Vodafone Deutschland will nicht mehr giga sein
    Entlassungen
    Vodafone Deutschland will nicht mehr giga sein

    Vodafone hat den Stellenabbau in Deutschland bestätigt. Ziel sei ein Unternehmen, dem man wieder vertrauen könne, sagt der neue Chef.

  2. Stormbreaker: Smarte Gleitbombe priorisiert Ziele
    Stormbreaker
    Smarte Gleitbombe priorisiert Ziele

    Raytheon hat einen Millionenauftrag zur Herstellung von 1.500 computergesteuerten Gleitbomben des Typs Stormbreaker für die US-Luftwaffe erhalten.

  3. Weltgrößter Kabelnetzbetreiber: Liberty Global legt sich nicht auf DOCSIS 4.0 fest
    Weltgrößter Kabelnetzbetreiber
    Liberty Global legt sich nicht auf DOCSIS 4.0 fest

    In den USA sind die Kabelnetzbetreiber sehr schnell mit dem DOCSIS 4.0 Rollout. Liberty Global hält sich Glasfaserüberbau und den neuen Standard gleichermaßen offen.

Du willst dich mit Golem.de beruflich verändern oder weiterbilden?
Zum Stellenmarkt
Zur Akademie
Zum Coaching
  • Schnäppchen, Rabatte und Top-Angebote
    Die besten Deals des Tages
    • Daily Deals • Nur noch heute: Amazon Frühlingsangebote • MindStar: MSI RTX 4080 1.249€, Powercolor RX 7900 XTX OC 999€ • Fernseher Samsung & Co. bis -43% • Monitore bis -50% • Bosch Prof. bis -59% • Windows Week • Logitech bis -49% • Alexa-Sale bei Amazon • 3 Spiele kaufen, 2 zahlen [Werbung]
    •  /