Warum ist das Lernen neuronaler Netze so schwierig?
Ein Grund dafür, dass es so schwierig ist, neuronale Netze lernfähig zu machen, ist die hohe Dimensionalität, also die Vielzahl der vorhandenen Merkmale. In dem in Abbildung 9 verwendeten Beispiel ist das Lernen noch einfach, bei richtigen Fotos wird es deutlich schwieriger. Warum?
Für die Entscheidungsfunktion nimmt man an, dass Punkte im Merkmalsraum, die nahe beieinanderliegen, zur gleichen Klasse gehören. Bei komplexen Problemen ist der Raum allerdings sehr hochdimensional. Dadurch gibt es in den meisten Bereichen des Raumes keine Trainingspunkte. Dieses Phänomen wird Fluch der Dimensionen genannt. Daher kann eine Klassifikationsentscheidung nicht einfach nur auf räumlicher Nähe zu Trainingsbeispielen basieren (siehe Abbildung 7).
Abbildung 7: Das Lernen der Entscheidungsfunktion (hier nur bzgl. der letzten Schicht des neuronalen Netzes) basiert auf einem Trainingsdatensatz. Hier anhand von vier Beispielen der positiven Klasse (Label: 1) und drei Beispielen der negativen Klasse (Label: 0). Die initial zufällig ausgewählte Entscheidungsgrenze (rot) weist einen großen Fehler(wert) auf, weil die meisten Datenpunkte falsch vorhergesagt werden. Beim Lernen wird nun die Entscheidungsebene sukzessive so geändert (gedreht und verschoben), dass der Fehler minimal wird. Als Resultat erhält man die blaue Entscheidungsebene, die hier die Trainingsbeispiele perfekt in die gewünschten Zielklassen einteilt. Zur Vereinfachung demonstriert das Beispiel nur das Lernen der letzten Schicht und nur von einem Neuron.
Eine weitere Schwierigkeit ist die Varianz in den Rohdaten. Die gleiche Szene beispielsweise ergibt, unter verschiedenen Lichtverhältnissen fotografiert, Punkte im Merkmalsraum, die sehr weit voneinander entfernt liegen. Fotos aus einer anderen Kategorie können deshalb räumlich näher beieinanderliegen als Fotos der gleichen Szene.
Beispielsweise kann ein Foto eines Gesichtstattoos mit vielen Grünwerten eventuell fälschlicherweise näher an der Kategorie Landschaftsaufnahme erkannt werden. Die Entscheidungsfunktion ist in dem ursprünglichen Merkmalsraum extrem kompliziert und hoch variabel, so wie in Abbildung 6 auf der linken Seite angedeutet.
Oder nutzen Sie das Golem-pur-Angebot
und lesen Golem.de
- ohne Werbung
- mit ausgeschaltetem Javascript
- mit RSS-Volltext-Feed
| Wie funktioniert das Lernen mit neuronalen Netzwerken? | Tiefes Lernen über mehrere Schichten |










Der Artikel hat mir gut gefallen. Nicht zuletzt auch, weil er sehr tief in die Materie...
Jetzt müssten endlich auch mobil alle Bilder zu sehen sein!
Schöner und interessanter Artikel.
Tatsächlich hat Siri was mit lernen zutun - oder genauer mit Training. Die verwendete...