Wie funktioniert das Lernen mit neuronalen Netzwerken?

Sowohl die Merkmalstransformationen als auch die Klassenentscheidung werden bei neuronalen Netzen durch die Beobachtung der Daten gelernt. Für unser Beispiel erfolgt der Lernvorgang für die Aufgabe der Klassenzuordnung von Bildern. Zuerst wird ein Bild am Eingang des neuronalen Netzes angelegt und der Ausgangswert berechnet. Aus der Differenz zwischen dem Ausgang und der gewünschten Klasse lässt sich ein Fehler(wert) berechnen.

Stellenmarkt
  1. Softwareentwickler Angular (w/m/d)
    freenet DLS GmbH, Büdelsdorf
  2. Software Entwickler (m/w/d)
    Rieter Ingolstadt GmbH, Ingolstadt
Detailsuche

Dieser Fehler hängt von sogenannten Gewichten der Neuronen (siehe Abbildung 1) ab, denn sie bestimmen den Ausgangswert.

  • Abbildung 1 (Bild: Christian Herta)
  • Abbildung 2 (Bild: Christian Herta)
Abbildung 1 (Bild: Christian Herta)

Abbildung 1: Ein Neuron als kleinste Recheneinheit eines neuronalen Netzes: Es wird die Summe der gewichteten Eingabewerte x1, x2, ... xn berechnet, d. h., jeder Eingabewert xi wird zuerst mit einem Gewicht wi multipliziert, bevor alle Eingabewerte aufsummiert werden.

Abbildung 2: Anschließend wird eine Aktivierungsfunktion (Schwellenwertfunktion) σ auf die gewichtete Summe angewendet. Falls die gewichtete Summe größer als der Schwellwert (hier im Beispiel 0,75) ist, liegt am Ausgang des Neurons eine 1 (aktiv) an. Falls die gewichtete Summe kleiner ist, ist das Neuron dagegen inaktiv. Der Ausgang hat dann den Wert 0. Dies ist ein Beispiel für eine harte Aktivierungsfunktion (blau). In Grün ist eine weichere Aktivierungsfunktion dargestellt.

Golem Karrierewelt
  1. Cinema 4D Grundlagen: virtueller Drei-Tage-Workshop
    07.-09.11.2022, Virtuell
  2. Airtable Grundlagen: virtueller Ein-Tages-Workshop
    09.12.2022, Virtuell
Weitere IT-Trainings

Ein Gewicht ist sozusagen die Wertschätzung oder Wahrscheinlichkeit, die das neuronale Netzwerk der Beobachtung eines Neuronen zuordnet. Beim Lernen werden nun die Gewichte so angepasst, dass der Fehler kleiner wird, indem der Ausgangswert sich dem gewünschten Zielwert für alle Trainingsbeispiele annähert (siehe Abbildung 9).

  • Abbildung 9 (Bild: Christian Herta)
Abbildung 9 (Bild: Christian Herta)

Abbildung 9: Vereinfachte Darstellung einer Merkmalstransformation für zwei Merkmale und drei Klassen. Im ursprünglichen Merkmalsraum haben wir eine komplizierte Abbildungsfunktion der Merkmale auf die Klassen. Nach der Transformation sind die Datenpunkte der unterschiedlichen Klassen im Raum durch einfache gerade Trennlinien (im allgemeinen Hyperebenen) voneinander abgegrenzt.

Das Lernen wurde so als ein mathematisch lösbares Optimierungsproblem formuliert.

Für unser Beispiel der drei Klassen codiert man die Zielklasse mit drei Ausgangsneuronen o1, o2 und o3. Jedes Ausgangsneuron entspricht dann einer Klasse. o1 steht beispielsweise für die Landschaftsaufnahme, o2 für Porträts und o3 für die Tieraufnahmen. Wird ein Porträtfoto am Eingang angelegt, ist der Wunschzielwert der Ausgangsneuronen: o1=0; o2=1; o3=0; in Vektorform (0,1,0). Die Ausgangsneuronen des neuronalen Netzes haben typischerweise eine Aktivierungsfunktion, die Wahrscheinlichkeiten für die Klassen angeben.

Ist der Ausgang z. B. (0.3, 0.45, 0.25), so bedeutet dies, dass das neuronale Netz folgende Wahrscheinlichkeiten berechnet: 30 Prozent für die Klasse Landschaftsaufnahme, 45 Prozent für die Klasse Porträt und 25 Prozent für die Klasse Tieraufnahme.

Der Fehler ergibt sich dann aus der Differenz zwischen der Einschätzung des neuronalen Netzes für die Zielklasse zur gewünschten Zielwahrscheinlichkeit 100 Prozent. Da die Einschätzung des neuronalen Netzes für die Zielklasse Porträt 45 Prozent beträgt, ist die Differenz 100 Prozent - 45 Prozent = 55 Prozent.

Beim Lernen werden nun die Neuronengewichte so modifiziert, dass der Fehlerwert von 55 Prozent erniedrigt wird. Das heißt, dass die Wahrscheinlichkeit für die Zielklasse Porträtfoto erhöht werden soll. Beim Anlegen dieses Fotos soll sie größer als die bisherigen 45 Prozent sein. Ein wichtiger Algorithmus für diese Anpassung der Gewichte ist Backpropagation.

Dabei wird effizient berechnet, wie stark die einzelnen Neuronengewichte geändert werden müssen, um den Fehler zu reduzieren.

Bitte aktivieren Sie Javascript.
Oder nutzen Sie das Golem-pur-Angebot
und lesen Golem.de
  • ohne Werbung
  • mit ausgeschaltetem Javascript
  • mit RSS-Volltext-Feed
 Wissen repräsentieren und generalisierenWarum ist das Lernen neuronaler Netze so schwierig? 
  1.  
  2. 1
  3. 2
  4. 3
  5. 4
  6. 5
  7. 6
  8. 7
  9. 8
  10.  


kahmann 29. Okt 2015

Der Artikel hat mir gut gefallen. Nicht zuletzt auch, weil er sehr tief in die Materie...

jg (Golem.de) 15. Okt 2015

Jetzt müssten endlich auch mobil alle Bilder zu sehen sein!

natsan2k 08. Okt 2015

Schöner und interessanter Artikel.

Anonymer Nutzer 08. Okt 2015

Tatsächlich hat Siri was mit lernen zutun - oder genauer mit Training. Die verwendete...



Aktuell auf der Startseite von Golem.de
Microsoft Garage
Eine Maus für alles

Helferlein Mehrere Monitore an einem Rechner sind für die effektive IT-Arbeit elementar. Für die Bedienung von mehreren Rechnern mit einem Eingabeset hingegen braucht es Hilfsmittel, zum Beispiel Mouse Without Borders.
Von Kristof Zerbe

Microsoft Garage: Eine Maus für alles
Artikel
  1. Power-Swap-Station: Nio aktiviert ersten Akku-Wechsler für Autos in Deutschland
    Power-Swap-Station
    Nio aktiviert ersten Akku-Wechsler für Autos in Deutschland

    Nio nimmt seine erste Akku-Wechselstation für seine Elektroautos in Deutschland in Betrieb. Sie steht an der A8.

  2. Konzeptfahrzeug: Citroën Oli ist ein Elektro-SUV mit Pappkarosserie
    Konzeptfahrzeug
    Citroën Oli ist ein Elektro-SUV mit Pappkarosserie

    Die Karosserie des Elektroautos Citroën Oli besteht aus recyceltem Karton. Das Auto wiegt unter 1.000 kg und soll 400 km weit kommen.

  3. Flexpoint, Bfloat16, TensorFloat32, FP8: Dank KI zu neuen Gleitkommazahlen
    Flexpoint, Bfloat16, TensorFloat32, FP8
    Dank KI zu neuen Gleitkommazahlen

    Die Dominanz der KI-Forschung bringt die Gleitkommazahlen erstmals seit Jahrzehnten wieder durcheinander. Darauf muss auch die Hardware-Industrie reagieren.
    Von Sebastian Grüner

Du willst dich mit Golem.de beruflich verändern oder weiterbilden?
Zum Stellenmarkt
Zur Akademie
Zum Coaching
  • Schnäppchen, Rabatte und Top-Angebote
    Die besten Deals des Tages
    Daily Deals • LG OLED TV 2022 65" 120 Hz 1.799€ • ASRock Mainboard f. Ryzen 7000 319€ • MindStar (G.Skill DDR5-6000 32GB 299€, Mega Fastro SSD 2TB 135€) • Alternate (G.Skill DDR5-6000 32GB 219,90€) • Xbox Series S + FIFA 23 259€ • PCGH-Ratgeber-PC 3000€ Radeon Edition 2.500€ [Werbung]
    •  /