Abo
  • Services:
Anzeige
Die metallene Box in der Mitte des Bildes zeigt den Kielfeld-Beschleuniger.
Die metallene Box in der Mitte des Bildes zeigt den Kielfeld-Beschleuniger. (Bild: SLAC National Accelerator Laboratory)

Kielfeld-Beschleuniger: Teilchenbeschleuniger für jedermann

Die metallene Box in der Mitte des Bildes zeigt den Kielfeld-Beschleuniger.
Die metallene Box in der Mitte des Bildes zeigt den Kielfeld-Beschleuniger. (Bild: SLAC National Accelerator Laboratory)

Kielfeld-Beschleuniger bringen Teilchen über kurze Entfernung auf Höchstgeschwindigkeit. Der Vorteil: Jeder kann so einen Beschleuniger auf einem Labortisch aufbauen.

Anzeige

Teilchenbeschleuniger sind in den Materialwissenschaften, in der Physik und Chemie, aber auch in Biologie und Medizin nützlich, weil sie es ermöglichen, die kleinsten Bausteine des Lebens zu erforschen. Allerdings haben sie einen großen Nachteil: Sie nehmen enorme Ausmaße an. In den USA haben Wissenschaftler jetzt mit Hilfe eines neuartigen Beschleunigerprinzips einen Energierekord aufgestellt: Ihr Kielfeld-Beschleuniger ist so klein, dass er sich in jedem Labor aufbauen ließe.

Herkömmliche Linearbeschleuniger funktionieren auf recht simple Weise: Geladene Teilchen werden von elektrischen Feldern auf Touren gebracht. Einfach die Feldstärke zu erhöhen, bringt die Ingenieure dabei nicht weiter, denn ab einem bestimmten Wert überschreiten sie die Durchschlagsspannung. Je höher die zu erreichende Energie ist, desto länger muss deshalb der Weg der Teilchen werden. So braucht der Beschleuniger SLAC des amerikanischen National Accelerator Laboratory rund zwei Kilometer, um Elektronen von 0 auf 20 GeV zu bringen. Pro Meter gewinnen die Teilchen damit gerade einmal 0,01 GeV.

Die Teilchen bewegen sich wie Surfer auf einer Welle

Der Beschleuniger, den ein Forscherteam jetzt im Wissenschaftsmagazin Nature vorstellt, nimmt sich dagegen ganz anders aus: Auf nur 30 Zentimetern Wegstrecke überträgt er 1,6 GeV an die Elektronen. Wie haben die Physiker diesen Trick zustande gebracht? Die Lösung verbirgt sich im Namen der Technik. Die Teilchen schwimmen gewissermaßen im Kielfeld eines schnell fahrenden Bootes mit. Sie bewegen sich wie Surfer auf einer Welle.

Dass sich dieses Prinzip für Miniaturbeschleuniger nutzen lassen müsste, vermutet die Forschergemeinde schon länger. Allerdings existiert ein praktisches Problem: Anders als ein Surfer können die Physiker nicht einfach warten, bis zufällig eine Welle vorbeikommt, auf der sie ihre Elektronen surfen lassen. Sie müssen diese Welle selbst erzeugen. Dazu testen sie zwei verschiedene Verfahren. Möglichkeit 1 ist ein starker Laser. Ein energiereicher Laserstrahl durchquert ein Plasma, also ein aus Ionen und Elektronen bestehendes Gas. Seine Kielwelle reißt die leichten Elektronen mit, während die Ionen zurückbleiben. So bauen sich in kürzester Zeit enorme elektrische Felder auf, die 100 bis 1000 Mal größer als in konventionellen Beschleunigern sind.

Wie hoch die erzielte Beschleunigung ist, hängt zum einen von der Stärke des Lasers ab, zum anderen von der zeitlichen Genauigkeit, mit der die Laserimpulse eintreffen. Im Fachmagazin Physics of Plasmas konnten Forscher erst kürzlich zeigen, dass die Pulse gar nicht im perfekten Moment kommen müssen. So, wie ein Kind beim Schaukeln auch nicht immer den optimalen Moment abpassen muss, kann auch ein inkohärentes Laserfeld die nötigen Energiespitzen produzieren. Das gibt den Forschern die Möglichkeit, statt eines teuren Super-Lasers viele schwächere Laser gemeinsam einzusetzen.

Alle Surfer müssen im gleichen Moment starten

Im Wissenschaftsmagazin Nature vermelden Forscher des amerikanischen National Accelerator Laboratory nun Erfolge mit einer anderen Technik: Sie lassen Elektronen im Feld eines weiteren, nahezu lichtschnellen Elektronenstrahls surfen. Die Schwierigkeit besteht hier darin, dass alle Surfer quasi im selben Moment starten müssen, weil sich sonst eine sehr breite Energieverteilung einstellt. Ein Teilchenstrahl, dessen Mitglieder zu verschiedene Energien aufweisen, nutzt der Forschung wenig.

Als Boot, das das Kielfeld erzeugte, diente in diesem Experiment ein 20-GeV-Elektronenstrahl des Linearbeschleunigers SLAC. Diesen teilten die Forscher derart, dass etwa die Hälfte der Teilchen auf der Welle der anderen Teilchen mitschwimmen konnte. Diese Surfer erhielten über die minimale Wegstrecke von 30 Zentimetern 1,6 GeV zusätzliche Energie - und zwar, das ist der eigentliche Erfolg, mit einem sehr schmalen Spektrum. Könnte man mehrere dieser Miniatur-Beschleuniger hintereinander schalten, so die Hoffnung, ließen sich auch Energien erreichen, mit denen die Physik Phänomenen wie dem Higgs-Boson (126 GeV) oder der Dunklen Materie näher kommen könnte.


eye home zur Startseite
anonym 11. Nov 2014

oh ja zu weihnachten, das wäre schön. dann müsste ich nicht immer nach frankreich oder in...

vlad_tepesch 10. Nov 2014

Kickstarter?

anonym 10. Nov 2014

variante 1 bräuchte das ja nicht ;) und son linac ist nun auch nicht grade gro...



Anzeige

Stellenmarkt
  1. T-Systems International GmbH, Bonn, Frankfurt am Main, Leinfelden-Echterdingen, München
  2. FRITZ & MACZIOL group, deutschlandweit
  3. operational services GmbH & Co. KG, Berlin
  4. T-Systems International GmbH, Bonn, Berlin


Anzeige
Top-Angebote
  1. 99,90€ inkl. Versand (Vergleichspreise ab ca. 129€)
  2. 59,99€/69,95€

Folgen Sie uns
       


  1. Linux

    Kernel-Sicherheitsinitiative wächst "langsam aber stetig"

  2. VR-Handschuh

    Dexta Robotics' Exoskelett für Motion Capturing

  3. Dragonfly 44

    Eine Galaxie fast ganz aus dunkler Materie

  4. Gigabit-Breitband

    Google Fiber soll Alphabet zu teuer sein

  5. Google-Steuer

    EU-Kommission plädiert für europäisches Leistungsschutzrecht

  6. Code-Gründer Thomas Bachem

    "Wir wollen weg vom Frontalunterricht"

  7. Pegasus

    Ausgeklügelte Spyware attackiert gezielt iPhones

  8. Fenix Chronos

    Garmins neue Sport-Smartwatch kostet ab 1.000 Euro

  9. C-94

    Cratoni baut vernetzten Fahrradhelm mit Crash-Sensor

  10. Hybridluftschiff

    Airlander 10 streifte Überlandleitung



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
­Cybersyn: Chiles Traum von der computergesteuerten Planwirtschaft
­Cybersyn
Chiles Traum von der computergesteuerten Planwirtschaft
  1. Princeton Piton Open-Source-Chip soll System mit 200.000 Kernen ermöglichen
  2. Programmiersprache Go 1.7 läuft schneller und auf IBM-Mainframes
  3. Adecco IBM will Helpdesk-Geschäft in Erfurt und Leipzig loswerden

Thinkpad X1 Carbon 2013 vs 2016: Drei Jahre, zwei Ultrabooks, eine Erkenntnis
Thinkpad X1 Carbon 2013 vs 2016
Drei Jahre, zwei Ultrabooks, eine Erkenntnis
  1. Huawei Matebook im Test Guter Laptop-Ersatz mit zu starker Konkurrenz
  2. iPad Pro Case Razer zeigt flache mechanische Switches
  3. Thinkpwn Lenovo warnt vor mysteriöser Bios-Schwachstelle

Asus PG248Q im Test: 180 Hertz erkannt, 180 Hertz gebannt
Asus PG248Q im Test
180 Hertz erkannt, 180 Hertz gebannt
  1. Raspberry Pi 3 Booten über USB oder per Ethernet
  2. Autonomes Fahren Mercedes stoppt Werbespot wegen überzogener Versprechen
  3. Radeon RX 480 Dank DX12 und Vulkan reicht auch eine Mittelklasse-CPU

  1. Re: IMHO: FTTH ist auch ziemlicher overkill

    Ovaron | 11:38

  2. Die Uhr meines Urgroßvaters hat sündhaft viele...

    lear | 11:25

  3. Re: Nur um das nochmal klar zu stellen

    pythoneer | 11:19

  4. Re: Jetzt ist sie raus. Ich habe mehr erwartet.

    t3st3rst3st | 11:14

  5. Re: Wird Zeit zu wechseln

    Private Paula | 11:14


  1. 15:33

  2. 15:17

  3. 14:29

  4. 12:57

  5. 12:30

  6. 12:01

  7. 11:57

  8. 10:40


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel