Abo
  • Services:
Anzeige
Die Tarnkappe unter dem Elektronenmikroskop
Die Tarnkappe unter dem Elektronenmikroskop (Bild: KIT)

Tarnkappe

Metamaterial macht Gegenstände unsichtbar

Die Tarnkappe unter dem Elektronenmikroskop
Die Tarnkappe unter dem Elektronenmikroskop (Bild: KIT)

Forscher aus Karlsruhe haben ein Metamaterial entwickelt, das im sichtbaren Lichtspektrum funktioniert. Sie haben daraus eine winzige Tarnkappe gebaut, mit der sie eine Wölbung in einer Metallfläche optisch verschwinden lassen können.

Wissenschaftler des Karlsruher Instituts für Technologie (KIT) haben ein Material entwickelt, das es ermöglicht, Gegenstände im roten Spektrum des sichtbaren Lichts verschwinden zu lassen.

Anzeige

100 Nanometer große Holzscheite

Das von Joachim Fischer und Tolga Ergin entwickelte sogenannte Metamaterial lenkt Lichtwellen so, dass diese das Material wieder verlassen, als ob sie nie mit dem Objekt, das von dem Metamaterial bedeckt wird, in Berührung gekommen wären. Es besteht aus Kunststoff und Luft. Die Forscher vergleichen seine Struktur mit einem Holzstapel. Die Scheite, die etwa 100 Nanometern groß sind, lenken die Lichtwellen um.

  • Die Struktur des Metamaterials ist kleiner als die Wellenlänge des sichtbaren Lichts. (Bild: KIT)
  • Die Tarnkappe in einer elektronenmikroskopischen Aufnahme. Das Metamaterial erscheint blau; es ist mit Gold beschichtet. (Bild: KIT)
Die Struktur des Metamaterials ist kleiner als die Wellenlänge des sichtbaren Lichts. (Bild: KIT)

Die Forscher haben aus dem Metamaterial eine Tarnkappe konstruiert, mit der sie ein Objekt, das in einer Wölbung in einem Metallspiegel liegt, unsichtbar gemacht haben. Die Lichtwellen wurden so umgelenkt, dass die Metallfläche flach und ohne Wölbung erschien. Die Tarnkappe, die Fischer und Ergin aus dem Metamaterial gebaut haben, ist allerdings sehr klein: Sie ist kleiner als der Durchmesser eines menschlichen Haares.

Kleiner als die Wellenlänge

Um einen solchen Effekt zu erreichen, muss das Metamaterial Strukturen aufweisen, die kleiner sind als die Länge der Wellen, die abgelenkt werden sollen. Bei Rundfunk- oder Radarwellen, die eine recht große Wellenlänge haben, könnte ein Tarnkappenmaterial "fast mit der Nagelschere produziert werden", erklärt Martin Wegener, der die KIT-Arbeitsgruppe leitet, in der das Metamaterial entwickelt wurde. Damit Lichtwellen im sichtbaren Spektrum umgelenkt werden können, müssen die Strukturen im Nanometerbereich liegen.

Derzeit geht das allerdings nur im roten Spektrum des sichtbaren Lichts. Um eine Tarnkappe zu bekommen, die für das gesamte Spektrum des sichtbaren Lichts funktioniert, müssen die Forscher den Abstand zwischen den Strukturen halbieren, sagt Fischer.

Um Strukturen in dieser Größenordnung herstellen zu können, haben die Karlsruher ein eigenes Verfahren entwickelt, das Direkte Laserschreiben (DLS). Damit lassen sich die winzigen 3D-Strukturen erzeugen, die über optische Eigenschaften verfügen, die in der Natur nicht vorkommen.


eye home zur Startseite
groby999 24. Mai 2011

mal nicht gerade...

groby999 24. Mai 2011

Jetzt versteh ich es, man kann es nicht sehen oder zeigen weil man es sowieso nicht sehen...

Lokster2k 20. Mai 2011

So true^^ ymmd :-)

Replay 20. Mai 2011

Doch, das gibt einen Sinn. Verstehst du ihn nicht? Du regst dich ziemlich auf (bellst...

wp (Golem.de) 20. Mai 2011

Vielen Dank für den Hinweis - der Fehler ist jetzt korrigiert. wp (Golem.de)



Anzeige

Stellenmarkt
  1. über Hanseatisches Personalkontor Hannover, Großraum Braunschweig
  2. Deutsche Telekom AG, Mülheim an der Ruhr
  3. Industrial Application Software GmbH, Karlsruhe
  4. IT-Dienstleistungszentrum Berlin, Berlin


Anzeige
Top-Angebote
  1. 94,90€ statt 109,90€
  2. 74,90€
  3. (u. a. The Expendables 3 Extended 7,29€, Fight Club 6,56€, Predator 1-3 Collection 24,99€)

Folgen Sie uns
       


  1. Pangu

    Jailbreak für iOS 9.3.3 ist da

  2. Amazon Prime Air

    Lieferdrohnen könnten in Großbritannien bald starten

  3. Bildbearbeitung unmöglich

    Lightroom-App für Apple TV erschienen

  4. Quartalszahlen

    Apple-Gewinn bricht wegen schwächerer iPhone-Verkäufe ein

  5. SSD

    Crucial erweitert MX300-Serie um 275, 525 und 1.050 GByte

  6. Shroud of the Avatar

    Neustart der Ultima-ähnlichen Fantasywelt

  7. Spielekonsole

    In Nintendos NX stecken Nvidias Tegra und Cartridges

  8. Nach Terroranschlägen

    Bayern fordert Ausweitung der Vorratsdatenspeicherung

  9. Android-Smartphone

    Update soll Software-Probleme beim Oneplus Three beseitigen

  10. Tim Sweeney

    "Microsoft will Steam zerstören"



Haben wir etwas übersehen?

E-Mail an news@golem.de


Anzeige
Xiaomi Mi Band 2 im Hands on: Fitness-Preisbrecher mit Hack-App
Xiaomi Mi Band 2 im Hands on
Fitness-Preisbrecher mit Hack-App
  1. Xiaomi Hugo Barra verkündet Premium-Smartphone
  2. Redmi 3S Xiaomis neues Smartphone kostet umgerechnet 95 Euro
  3. Mi Band 2 Xiaomis neues Fitness-Armband mit Pulsmesser kostet 20 Euro

Schwachstellen aufgedeckt: Der leichtfertige Umgang mit kritischen Infrastrukturen
Schwachstellen aufgedeckt
Der leichtfertige Umgang mit kritischen Infrastrukturen
  1. Pilotprojekt EU will Open Source sicherer machen
  2. Mobilfunk Sicherheitslücke macht auch Smartphones angreifbar
  3. Master Key Hacker gelangen per Reverse Engineering an Gepäckschlüssel

Core i7-6820HK: Das bringt CPU-Overclocking im Notebook
Core i7-6820HK
Das bringt CPU-Overclocking im Notebook
  1. Stresstest Futuremarks 3DMark testet Hardware auf Throttling

  1. Re: Denkfehler

    chefin | 07:31

  2. Re: Windows wird sterben, weil die Leute von...

    eXXogene | 07:29

  3. Re: geringere Latenz steigert fps?

    PiranhA | 07:26

  4. Re: Microsoft schafft sich selber ab

    Little_Green_Bot | 07:26

  5. Re: Entweder gehen noch andere Abteilungen in die...

    holysmoke | 07:25


  1. 07:28

  2. 07:13

  3. 23:40

  4. 23:14

  5. 18:13

  6. 18:06

  7. 17:37

  8. 16:54


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel