Molekülfilm: Berliner Forscher filmen Nanostrukturen

Molekülfilm

Berliner Forscher filmen Nanostrukturen

Berliner Wissenschaftler haben ein Verfahren entwickelt, um Bilder mit einem Abstand von wenigen Femtosekunden aufzunehmen. So soll es möglich sein, Prozesse im Nanobereich zu filmen.

Anzeige

Forscher haben eine Methode entwickelt, um Vorgänge im Nanobereich zu filmen. Da die aufgenommenen Objekte nicht nur sehr klein sind, sondern die Vorgänge auch nur wenige Femtosekunden dauern, ist es sehr schwierig, sie filmisch festzuhalten. Das erfordert neben einer sehr starken Vergrößerung auch extrem kurze Belichtungszeiten. Den Wissenschaftlern des Berliner Helmholtz-Zentrums für Materialien und Energie (HZB) und der Technischen Universität Berlin (TUB) ist es gelungen, Bilder im Abstand von 50 Femtosekunden aufzunehmen.

Überlagerte Bilder

In einer so kurzen Zeit ist es möglich, mit einem ultrakurzen Lichtblitz ein Bild aufzunehmen. Mehrere Bilder aufzunehmen, ist unmöglich, da diese sich dann auf dem Detektor überlagern und undeutlich sind. Den Detektor zwischen zwei Bildern auszutauschen, ist wegen der schnellen Bildfolge nicht möglich. Deshalb ließen sich die Berliner Forscher um Projektleiter Stefan Eisebitt etwas anderes einfallen: Sie nahmen mit Hilfe eines Röntgenhologramms als Detektor zwei Bilder gleichzeitig auf und rekonstruierten anschließend die einzelnen Abbildungen.

Dazu werden zunächst die Röntgenpulse in zwei separate Lichtblitze aufgeteilt: Ein Lichtblitz wird umgeleitet, so dass er minimal später auf das abzubildende Objekt trifft. So entstehen zwei überlagerte Hologramme. Die Position der Bilder zum abgebildeten Objekt ist jedoch verschieden - je nachdem, von welchem Lichtblitz sie erzeugt wurden. Das nutzten die Forscher, um die Einzelbilder zu rekonstruieren: Sie ordneten jedes Bild dem passenden Lichtblitz zu und erhielten so eine zeitlich richtige Abfolge der Bildsequenz.

Kurzfilm über Mini-Brandenburger-Tor

Eisebitt und seine Kollegen haben ihre Methode am Deutschen Elektronensynchrotron (Desy) in Hamburg getestet. Dort nahmen sie mit dem Röntgenlicht des Lasers Flash-Bilder eines Modells des Brandenburger Tors im Mikroformat im Abstand von 50 Femtosekunden auf. Ihre Ergebnisse haben sie im britischen Fachmagazin Nature Photonics beschrieben.

Ziel des Projektes war es, ein Verfahren zu entwickeln, mit dem sich sehr kleine Objekte mit einer sehr hohen zeitlichen Auflösung aufnehmen lassen. Das ermögliche es langfristig, die Bewegung von Molekülen und Nanostrukturen in Echtzeit zu verfolgen, erklärt Eisebitt. So soll beispielsweise sichtbar gemacht werden können, wie sich ein Molekül bei einer chemischen Reaktion verhält. Von solchen Aufnahmen erhoffen sich Wissenschaftler ein besseres Verständnis fundamentaler Vorgänge der Naturwissenschaften.


triple 31. Jan 2011

Nanotechnlogie wird in Zukunft wohl eine enorme Rolle spielen in der Computertechnik...

Forge 12. Jan 2011

yup. Wenn man weiß wonach man sucht sollte das recht "einfach" sein. Geht mit etwas...

differenzieren 12. Jan 2011

Schon eine Glasfaser differenziert das weiße Blitzlicht durch Laufzeitunterschiede in...

Forscher 12. Jan 2011

Dein Link hat mal gar nix mit dem im Artikel genannten Verfahren zu tun. Schon die...

Kommentieren



Anzeige

  1. Anwendungsentwickler Java EE Developer (m/w) Client Entwicklung
    ING-DiBa AG, Frankfurt
  2. (Junior) Survey Manager (m/w) Beratung Global Marketing Services
    Siemens AG, Mannheim
  3. C++ Software-Entwickler (m/w) Embedded System
    e.solutions GmbH, Erlangen
  4. Scientific Programmer (m/w)
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (Austria)

 

Detailsuche


Hardware-Angebote
  1. Alle PCGH-PCs inkl. The Witcher 3
  2. Apple TV (3. Generation, 1080p)
    74,90€
  3. Evga Geforce GTX 960 SuperSC
    mit 20 Euro Cashback nur 194,90€ bezahlen

 

Weitere Angebote


Folgen Sie uns
       


  1. HyperX-Serie

    Kingstons Predator ist die vorerst schnellste Consumer-SSD

  2. Forschung

    Virtuelle Nase soll gegen Simulatorkrankheit helfen

  3. 3D-NAND

    Intels Flash-Chips verdreifachen den SSD-Speicherplatz

  4. NSA-Ausschuss

    DE-CIX erhebt schwere Vorwürfe wegen BND-Abhörung

  5. Mars

    Curiosity findet biologisch verwertbaren Stickstoff

  6. Benchmark

    Neue 3DMark-Szene testet API-Overhead

  7. Verschlüsselung

    RC4 erneut unter Beschuss

  8. Online-Speicherdienst

    Amazon Cloud Drive bietet unlimitierten Speicherplatz

  9. Netflix

    Bis 2020 überholt Streaming das klassische Fernsehen

  10. Codemasters

    F1 2015 fährt auf neuen Pneus



Haben wir etwas übersehen?

E-Mail an news@golem.de



Netzneutralität: Autonome Autos brauchen Netz und Mikrochips sind knusprig
Netzneutralität
Autonome Autos brauchen Netz und Mikrochips sind knusprig
  1. Netzneutralität FCC verbietet Überholspuren im Netz
  2. Netzneutralität Was die FCC-Pläne für das Internet bedeuten
  3. Deregulierung FCC soll weitreichende Netzneutralität durchsetzen

KNX-Schwachstellen: Spielen mit den Lichtern der anderen
KNX-Schwachstellen
Spielen mit den Lichtern der anderen
  1. Danalock Wenn das Smartphone die Tür öffnet
  2. Apple Homekit will nicht in jedes Smart Home einziehen
  3. Elgato Eve Heimautomation mit Apple Homekit

Bloodborne im Test: Das Festival der tausend Tode
Bloodborne im Test
Das Festival der tausend Tode
  1. Bloodborne Patch und PC-Petition
  2. Bloodborne angespielt Angsthase oder Nichtsnutz

  1. Re: Also so langsam reicht es aber...

    tearcatcher | 03:46

  2. Re: Vorraussetzung ist Verfügbarkeit von DSL?

    Aralender | 03:15

  3. Re: Weit verbreitet

    homilolto | 02:58

  4. Re: Richtig so!

    Tzven | 02:51

  5. Re: Gut, ich mag die Lizenz ja auch nicht...

    Prinzeumel | 02:50


  1. 03:08

  2. 20:06

  3. 18:58

  4. 18:54

  5. 18:21

  6. 17:58

  7. 17:52

  8. 17:25


  1. Themen
  2. A
  3. B
  4. C
  5. D
  6. E
  7. F
  8. G
  9. H
  10. I
  11. J
  12. K
  13. L
  14. M
  15. N
  16. O
  17. P
  18. Q
  19. R
  20. S
  21. T
  22. U
  23. V
  24. W
  25. X
  26. Y
  27. Z
  28. #
 
    •  / 
    Zum Artikel